# Experimental results on diffractive dijets at CDF

Michele Gallinaro

(on behalf of the CDF collaboration)

June 26, 2009

- Introduction
- Diffractive production (dijets, W/Z, Forward jets)
- Exclusive production (dijets)
- Conclusions

# Hadronic diffraction



## Introduction

• In diffraction no quantum numbers are exchanged



# CDF central and forward detectors



# **Diffractive dijets**



in the ratio SD/ND many systematic uncertainties cancel out

## Diffractive structure function



## **Restoring factorization**



The diffractive structure function measured using DPE events is approximately the same as the one expected from HERA

#### Event selection in Run II



# Multiple interactions in Run II



# Multiple interactions in Run II

• Multiple proton-antiproton interactions spoil diffractive signature



- Measure  $\boldsymbol{\xi}$  from calorimeter and from RP tracking
- Reject multiple interactions
  - exclude  $\xi$ >0.1 (ND+SD interactions)

#### **Diffractive** structure function



## SD/ND ratio



# Q<sup>2</sup> dependence



# RPS dynamic alignment



# |t| distribution



- No diffraction `dips' observed at |t|<1</li>
- Soft and hard diffractive events have the same slope

# Diffractive W/Z production

Study W/Z boson production helps to determine the **quark** content of the Pomeron



At LO, the W/Z is produced by a **quark** in the Pomeron

Production by a gluon is suppressed by  $\alpha_s$ . Can look at additional jet.

Michele Gallinaro - "Diffractive dijets at CDF" - CERN, June 26, 2009

Or

# Diffractive W/Z production (cont)

- Identify diffractive events using RPS
- $\bullet$  Calculate  $\xi$  from calorimeter
- In W production, difference  $\xi^{cal}-\xi^{RPS}$  is due to missing  $E_T$ , and  $\eta_v$ .

$$\boldsymbol{\xi}^{RP} - \boldsymbol{\xi}^{cal} = \frac{\boldsymbol{E}_T}{\sqrt{\boldsymbol{s}}} \boldsymbol{e}^{-\boldsymbol{\eta}_{\nu}}$$

- Can estimate:
  - neutrino kinematics
  - W kinematics
  - x<sub>Bj</sub>
- Next: Determine structure function in diffractive W production



# Diffractive W/Z production (cont)



Remove events with non diffractive W/Z production+soft SD interaction

# Diffractive W/Z measurement

• Measured fractions:

 $R_W = 0.97 \pm 0.05(stat) \pm 0.11(syst) \%$  $R_Z = 0.85 \pm 0.20(stat) \pm 0.11(syst) \%$ 

- Run I diffractive W studies performed with rapidity gap instead of RPS
- CDF: Phys.Rev.Lett. 78,2698(1997)
  - Fraction of events due to SD for x<0.1: [1.15±0.51(stat)±0.20(syst)]%</p>
  - Combined with other SD measurements (b-quark,jet), quark-gluon content of the Pomeron is determined:  $f=0.54^{+0.16}_{-0.14}$
- D0: Phys.Rev.Lett.B 574,169(2003)
  - Fraction of events with rapidity gap:
  - W: **[0.89**<sup>+0.19</sup><sub>-0.17</sub>]%
  - Z: **[1.44** <sup>+0.61</sup><sub>-0.52</sub>]%
  - [If correction for rapidity gap acceptance is applied...R(W): 5.1%]

#### **Diffractive rates**

$$p\overline{p} \rightarrow X + \text{gap}$$

#### Measured SD/ND fractions at 1.8 TeV



W probes quark component  $(q\bar{q} \rightarrow W)$ D (MEASURED / PREDICTED) 9.0 8.0 8.0 7 8.0 ZEUS CDF-W CDF-b 0.4 CDF-DIJET 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 GLUON FRACTION IN POMERON

All SD/ND fractions ~ 1% Different sensitivities to quark/gluon  $\Rightarrow$  gluon fraction f<sub>g</sub>=0.54 (0.15)

# Central gap between forward jets



Rapidity gap in Central and Plug calorimeter

- Characterize gap formation
  - fraction of gap events (soft and hard interactions)
  - dependence on gap size
- Mueller-Navelet jets



#### Jet $\Delta \phi$ correlation



# Rapidity gap event fraction



- Event fraction is ~10% in soft events, and ~1% in jet events
- Shapes are similar

# **Exclusive production**



✓ clean process✓ exclusive bb suppressed

Khoze Martin Ryskin:  $\sigma_H$ (LHC)~3 fb, signal/bkg~3 (if  $\Delta M_{miss}$ =1 GeV)

Attractive Higgs discovery channel at the LHC



#### ⇒much larger cross section

#### Goal:

measure exclusive dijet production (if it exists)
test/calibrate Higgs predictions at LHC

#### Exclusive dijets in Run I



# Observation of exclusive dijets

Phys.Rev.D77:052004,2008

# Observe excess over inclusive DPE at large Mjj



 $\Rightarrow$  exclusive signal?



## Exclusive dijet cross section

#### Phys.Rev.D77:052004,2008



- R<sub>jj</sub> shape described by MC based on two models (ExHuME, DPEMC)
- Cross section agrees with ExHuME
- Data favor KMR model (uncertainty ~factor of 3)



# Summary

- CDF diffractive program continuing the improvement of understanding of diffractive processes
  - measured DSF at different Q<sup>2</sup> values
  - measured t-distribution in diffractive events
  - Dijets, W/Z, forward jets, exclusive jets
- Comparison of diffractive and non-diffractive processes
- Measurements of exclusive production important to calibrate predictions for exclusive Higgs production at LHC
- General tools which can be used at LHC:
  - Roman Pot dynamic alignment
  - use calorimeter information to measure  $\boldsymbol{\xi}$



#### **Exclusive cross section**



# a few comments



F<sub>ii</sub><sup>D</sup>(β ,ξ)~ 1/ β<sup>n</sup> [indep. of ξ]

 $\Rightarrow$  no change from IP to IR region

•  $F_{ii}^{D}(\beta=0.1,\xi) \sim 1/\xi^{m}$  m=1.0±0.1 for dijets

⇒ dijets are IP dominated, `inclusive' more IR like

- large uncertainty at high β (no coverage!) but result stable at low β
- small reggeon contribution



ξ-dependence is IP like (m for IP is ~1.1, for IR ~0 at Tevatron)

## **Kinematical properties**



#### Transverse energy



# Rapidity gap fraction vs gap width



# **Exclusive production**



✓ clean process✓ exclusive bb suppressed

Khoze Martin Ryskin:  $\sigma_H$ (LHC)~3 fb, signal/bkg~3 (if  $\Delta M_{miss}$ =1 GeV)

Attractive Higgs discovery channel at the LHC



#### ⇒much larger cross section

#### Goal:

measure exclusive dijet production (if it exists)
test/calibrate Higgs predictions at LHC