
1

IBERGRID 27

Exploring Containers for Scientific Computing

J. Comes" , J . Pinal , G. Borges" , J. Martins" , N. Diasl , H. Comes" , C. Manuel!

Laboratorio de Instrumentacao e Fis ica Exp erimental de P articulas Lisb oa, Portugal
jorge@lip .p t

Abstract . Resear chers have access to a diversified ecosyste m of comput­
ing resources ran ging from noteb ook s to comput ing clust ers and distributed
infrastructures. Running applicat ions across these different environments
requires considerable effort. T he Linux Containers technology a llows mul ti­
ple oper ating sys te m enviro nments t o be execute d on to p of a shared Linux
kernel space. It takes advantage of standard Linux kernel features t o pr o­
vide ligh tweight isolated Linux environments similar to virtual machines ,
but wit hout the over heads of convent ional virtuali zati on . In this paper we
highlight t he benefit s of this approac h, an d explore pat hs toward s the use
of containers to simplify t he packag ing and exec ut ion of scient ific applica­
tions.

Intr oduction

Most scienti fic applications ar e developed for Unix-like environments. Still porting
applicat ions to each spec ific computing environment requires considerable effort
and expert ise. Furthermore users are today faced with a wide range of computi ng
resources ranging from not ebooks to comput ing clusters and distributed infras­
tructures. These resources have t heir own peculiarities and interfaces t hat often
const itute obstacles to a transpar ent usage.

In ord er to exploit the computing resour ces at their disposal , the resear chers
need to por t applications to mul t iple compu t ing environments, and adapt t hem
each t ime t he environment changes. This is one of the reasons behind the interest
on more flexible par adi gms such as cloud computing, where users can have their
own custo mized environments backed by vir tual machines. This flexibili ty comes
at a price, t he scient ists are then confronted wit h the need of man aging virt ual
networks, vir tual storage , virtua l machines and their operat ing syste ms. In addi­
tion, at each site the man agement of these virt ual resources is often perform ed
differently.

Researchers thus face a complex ecosystem of heterogeneous computing re­
sources. In t his context lightweight forms of opera ting system vir tualization may
provide consiste nt port abl e run-ti me environ ments for the scient ific applications,
potentially facilitating their execution across computing resources.

I

28 II3ERGRID

2 Background • M
CE

2.1 Lightwe ight V irtualization
• U. n

Op erating systems enable the coordinated exploitation of computing resources by
qlmul tiple processes. Tradit ionally all processes share one common operating sys­

tem configuration and compete individually for the syste m resources. Conventional • P:

gl virtual machines are frequently used to provide better separ ation between sets of
tiactivit ies running in the same physical machines, and to provide differentiated
sa system configurations tailored to each activity. However , t his separ ation can also

be achieved in some operating systems through operating system-level inrtuoliza­ • N rrtion [1] with the following benefits:
• U

- No emulation or hyp ervisor overheads. All virtual execution environments ti:
share a single host kernel t hro ugh pro cess confinement . p:

- Mul tiple file system environme nts can be supported within a single host by AppA
confining the processes to specific file system t rees . mecht

- P rocesses within virtua l executio n environments are t ransparentl y scheduled be uS

and managed by the host kernel, allowing mor e efficient use of resources such users
as memory. writir
No extra resour ce consumption related to the simultaneous execut ion of mul­ Secco
t iple operating system kernels and operat ing system services. chroo

- Faster provisioning and environme nt start-up.	 cgrou
count

T he main disadvan tages are: inabi lity of running software t hat requires an and t(
operating system kernel different from the one provided by the host , and exposure block
of all vir tual environme nts to secur ity vulnerabili ties in the host kernel. Both are	

CPu~
consequences of sha ring the kernel. POSI

roo t ~

2.2 State of t he art	 abled

Examples of operating system-level vir tualization are:, Solari s Zones [2] available The a
on Solaris and Op enSolari s, Free BSD J ails [3] available on FreeBSD systems , and system-Ie
Op enVZ [4], Linux-VServer [5], Linux Containers (LXC) [6], and libvirt-LXC [7] through t
on Linux. Since most scient ific computing software and infr astructures are based
on Linux, we therefore focus on Linux implementations.

Both Op enVZ and Linux-VServer are mature imp lem entations bu t require 2.3 Ap
modified Linux kernels which constit utes a major obst acle to the ir wider adop­

Docker [1t ion. Conversely LXC an d libvirt.L'XC rely on vanilla Linux kernel features and
of appliestherefo re do not require modifi ed kernels. LXC is available out of the box in many
t ially Do Linux distributions, and is mor e mature than libvirLLXC. Both allow the manipu­
currentlylation of kernel features to create comprehensive contain ed environments, enabling
named lil t he execution of multiple Linux distributions over one single kernel. The most rel­
other imjevant Linux kernel features for operating system-level vir tualization are:
its many

- Kernel nam espaces [8] : are used to isolate a particular global syst em resour ce greatly ai
making it appear to the processes within t he namespace that they are using The I
the full resource. run in al

IBERGRID 29

)y

's­
.al
of
ed
so
:a­

tts

by

ed
ch

an
Ire

ire

ole
nd
[7]
ed

ire
ip­
nd
ny
lU­

ng
'el­

rce
ng

•	 Mount namespaces: isolate the mount po ints accessible to a group of pro ­
cesses.

•	 UTS na mespaces: provid e host name and domain name isolation.
•	 IPC namespaces: isolat e interprocess communication resources such as

queues, semaphores and shared memory.
•	 PID namespaces: isolate pro cess identifiers , so that processes within a

group cannot see pr ocesses in ot her groups, furthermo re t he pro cess iden­
t ifiers are remapped allowing processes within different groups to have the
same process number.

•	 Network nam espaces: isolate network resources such as network devices,
IP addresses, and routi ng tables.

•	 User namespaces: isolate user identifiers and group identi fiers. These iden­
tifiers are remapped and can be different inside an d outside of the names­
pace.

- AppArmor [9J and SELinux [10J: are kernel secur ity modules that implement
mechani sms to support mandatory access cont rol secur ity policies. T hey can
be used to pro tect the host system against accidental abuses from privileged
users from inside the contained environme nt such as changes to cgroups, or
writing into devices.

- Seccomp [11] : provides system call filtering.

- chroot [12] : provides isolated directory t rees.

- cgroups [13J : prov ide hierar chical task group ing and per-cgroup resour ce ac­

count ing and limi ts . They are used to limit block an d character device access
and to suspend sets of processes. They can be further used to limit memory and
block i/o, gua ra ntee minimum CPU shares, and to bind processes to spec ific
CP Us.

-	 POSIX capabilit ies [15]: split the pri vileges tradit ionally assoc iated with the
root account into distinct units, which can be independ entl y enabled an d dis­
abled .

The availability of these features is fostering the interest aro und ope rating
system-level virt ualization in Linux. Nevertheless their correct and safe use even
through too ls such as LXC requires considerable knowledge and configuration.

2.3 Application Containers

Docker [16] is an ope n-source engine t hat automates the creat ion and deployment
of applications in lightweight portable contained environme nts' (containers). Ini ­
t ially Docker relied on LXC to manipulated the necessary kernel features, bu t
curre nt ly it can suppo rt mul tiple execut ion drivers. It has its own nati ve driver
named libcontainer, and its modular nature may in the future allow it to run with
other implement ati ons (e.g. Op enVZ , FreeBSD jails , Solaris zones). Docker inher­
its many of the LXC features. However wit h Docker the creation of containers is
greatly automated and simplified with a higher level of abstraction.

The Docker containers encapsulate t he ap plications payload allowing t hem to
run in almost any Linux host with a recent distribu tion. Docker is inspired in

30lBERGRID

the int ermodal shipping container metaphor, where a multiplicity of goods can
be packaged and transported via a mult iplicity of mean s on standard containers.
T he availability of a common agreed format to ship goods has simplified their
t ransport, st orage and management. Similarly Docker offers a uniform way to
package, distribute, deploy and execute applications.

When creat ing a cont ainer for an applicat ion only the software components
st rict ly required for execution are needed. Since the operating system kernel is
shared, there is no need of having one in the containers . Similarl y usual processes
that are started at boot time are also not needed. Many functions such as time
synchronization, device management , power management , network configuration
and others are simply performed by the host . St ill an environment t hat resembl es a
common Linux syste m can also be made availab le insid e the containers, including:

A network interface with an IP address.
A dedicated file system for each cont ainer.
A set of system devices.

- Interacti ve shell support via pseudo-ttys.

LXC and Docker have a modular storage architecture that supports Union
Filesystems namely AuF S [14], Snap-shotting Filesystems and copy-on-write block
devices. Docker goes further by implementing a container image format wit h a
layered structure. This approach allows each container file syst em to be mounted
as a stack of superimposed read-only layers, on top of which a read- wri te layer
is added. Any changes ar e thus performed and reflected in t he read- write layer.
When execution finishes thi s layer can be either discarded or added to t he container
image as anot her layer. Images are tar files t hat contain layers, each layer is also
a tar file.

Docker can act as an image builder automating t he steps required to create
a new image t hat ot herwise would have to be performed manu ally. This process
takes a Docker-file that specifies as input an exist ing image to which a sequence
of actions will be applied. These are the actions that would need to be performed
manually to compile or inst all the required software. Moreover new files can also be
added. The image result ing from this process is a new storage layer t hat contains
t he changes performed during the build pro cess. Existing images can thus be used
as building blocks to create more complete images.

To facilitate image distribution and deploym ent Docker can push and pull
images from a remote regist ry. Since images are made of layers, the registry imple­
ments a t ransparent incremental downlo ad and uplo ad of the images t ransferr ing
only the requi red layers.

2.4 Orchestration

Containers offer interesting features to support the execut ion of applications across
comput ing resources. However most implementations such as LXC, libvirLLXC
and Docker operate at the host level as vir tual machine man agers. They do not
offer any orchest ratio n or clustering features. Hence, Docker is being incorporated
in many software products such as OpenStack [17] or Apache mesos [19] allowing

t he execut ion l!
are: CoreOS [1~

I
in clusters and
services. FlynJ

:~~:~~~~c:;~

Several other ~

mostly intende
and to scale ou

3 Compui

For scient ific C(

sive solut ion c
infrastructures
of computing.
t o address thei:
most intensive ~

far ms. Both ap
ti me. Therefore
and other comp
parently on grit
assumptions th
ability of state­
sh ows t he soft"

Distr

Cent

Cent

Fedc

Fedc

Ubunt

Ubunt

3.1 Use case

The proof of cc
own workstatioi
He wants to eXE
also in IBERGR

IBERGRID 31

the execution of containers in clouds and dedicated clust ers. Other related projects
are: CoreOS [18] a Linux distribution designed to sup port the execut ion of services
in clusters and cloud resources. CoreOS uses Docker to encapsulate and execute
services. Flynn [20] and DEIS [21] use Docker to provide platform as a service fea­
tures and scale to cloud providers. Both Flynn and DEIS use a git push dep loyment
model and are targete d at facilitating the flow from developm ent to deployment .
Several other software project s around Docker are emerging. T hese systems are
mostly intended at creating local clusters for the execut ion of permanent services,
and to scale out to public clouds.

3 Computing with Containers

For scient ific comput ing, t he described too ls do not cur rently offer a comprehen­
sive solution capa ble of simplifying the execution of applications across the e­
infrast ructures ecosyste m. In addit ion researchers want to focus on science inst ead
of comput ing. They require easier too ls to simplify their work , enabling them
to address their scient ific goals. Although cloud computing is gaining express ion,
most intensive simulat ions and data processing cont inues to be performed on batch
farms. Both approaches are complementary and they will likely be used for a long
time. Therefore scientists need a simple way to execute applications across these
and oth er comput ing resources without cha nging t hem. T his impli es running t ra ns­
parent ly on grid computing, cloud computing and ot her resources. Based on these
assumptions the authors developed a proof of concept aimed at tes ting the us­
ability of st at e-of-the-art containers in t he IBERGRID infrastructure. The table 1
shows the soft ware versions used in this st udy.

Dist ribution Virtual machin e man ager Kernel

Centos 6.5 Docker 0.11.1 + execut ion driver lxc-0.9.0

Docker 1.0 .0 + execut ion driver native-0 .2

2.6.32

Centos 6.5 LXC 0.9.0

LXC 1.0.0

Fedor a 20 Docker 1.0 .0 + execut ion driver native-0 .2 3.14.6

Fedora 20 LXC 0.9.0

Ubunt u 14.04 Docker 0.9 .1 + execut ion driver native-0 .1 3.13.0-29

Ubunt u 14.04 LXC 1.0 .3
:r
:>

Table 1. Softwar e versions used in this st udy

3. 1 Use case
s

The proof of conce pt is based on t he following use case . T he resear cher uses its
t own workst at ion to develop applications which are compute an d/or data intensive.
:i He want s to execute those applications on local computers accessible via SSH, and
g also in IBERGRID computi ng resour ces in Portugal. T he IBERGRID resour ces are

. :

•
•

Bes
I

ager (1~

t ributel
are shJ
fore hel
responi
ware, p.

I ar e res]
I

concern
I

of any j

•

•

•

:·:efiJ
using ~
prot ot~

was con
machinl
used tJ
. " I111lorma
need t ~
t he con

Icomm ui
t o sendl

I

view ofl
pr epar e

Creatil
. 1

op erati]
I

empowe
1t hat apj

defaul t j
tools sUI

1
Unfortu
t o the J

I

may be
and bed

config 1
ADM INS

config 1

Computing
Host

(Ahoy
Agent)

Computing
Host

(Ahoy
Agent)

Fig. 1. Context diagram

---)­

Client
Host

(Ahoy
Client)

MGR1management

...__---" "" , i

P reparation of an application image:

• T he user invokes t he A hoy clien t to pr epar e an application image build
req uest. T he request is sent to t he A hoy master for process ing. T herefore
t he user does not need to install in his computer any software besides the
client.

• As defined in t he req uest, t he Ahoy m aster builds a container usin g a
pre-exist ing operating system image to which the user pro vided files an d
soft ware packages are added.

Exec ution of the app lication:

• T he user sends a request for application execution (job) to t he Ahoy mas­
ter. T he request contains: metadata describin g the job namely: t he name
of t he application image built in t he pr evious step, and t he input dat a files.
T he files can be sent wit h the request itself or can be downloaded later at
execution t ime.

• T he requ est is valid ated, pr epared and queued by the Ahoy master.

The figure 1 shows t he context diagram of t he pro of of concept. It shows t hree
ma in components: t he Ahoy client inst alled in t he desktop computer, t he Ahoy
master inst alled in an int erm ediate host, and t he actual comput ing hosts that
execute t he user applications which are launched t hrough the Ahoy agen t.

T he master receives from t he clients requests to perform actions on t he user
behalf, including building images an d submitting t hem for execution in compute
host s. Those requ ests are validated and translate d int o container manage ment ac­
t ions. T he agen ts contact t he master periodically to obtain jobs for execution. T he
jobs are in fact containers t o be launched. T he master acts as an intermediat e host
bet ween t he user and t he resour ces, hiding t he det ails of access ing computing hosts
and managing containers. It requires inbound and outbound Intern et connectivity.
A bas ic flow is as follows:

computing farms accessible via CREAM Computing Elements (CREAM-CE) [22] .
T he operating systems in t he resear cher workstation and in the target execution
host s are different. He wants to execute his applications in t he computing resources
at his disposal wit h a minimum effort.

32 IBERGRID

II3ERGRID 33

•	 If needed the Ahoy master starts inst ances of t he Ahoy agent in the com­
puting hosts via the SSH or CREAM interfaces.

•	 The Ahoy agent contacts t he Ahoy m aster to get jobs for execution.
•	 The Ahoy agent pull s the container image and start s it with the appropri­

ate environ ment and restri ctions .
•	 The user can check the job status by querying the Ahoy master which

periodically gets inform ation from the agents .
•	 Upon completion the outpu t can be uploaded to the Ahoy m aster or ot her

external destination access ible via supported pro tocols.
•	 Finally a cleanup of the comp ut ing host is performed by the agent.

Besides the user itself, in t his scenario there are the following roles. T he man­
ager (labeled MGR) is the person responsible for the coordinated use of the dis­
tributed resour ces. In his role he may need to have a t ighte r cont rol of how resources
are shared and t he need to implement policies and job resource requirements, t here­
fore he ma nages the Ahoy m aster. The site administ rators (lab eled ADMINS) are
responsible for man aging the actua l computing hosts, namely they install the soft ­
ware, perform its configuration, control the usage and ensure that usage policies
are respected. T hey may work in different organi zations and t hey have a direct
concern on how and by whom their resources are used. T he deployment and use
of any form of virtualizati on requires their acceptance and cooperation.

3.2 Architecture

The figur e 2 shows an arc hitecture designed to explore the describ ed use case
using Linux containers . A demonstrator was developed in Python [25], the current
prototype is focused at exploring the Linux containers features. The architecture
was conceived to be generic and modular, enabling to experimen t with ot her virtual
machine man agers. The Ahoy master implements two RESTful APIs the first is
used to receive request s from the Ah oy client and the second to receive status
information, send commands and jobs to the Ahoy agen ts. Both clients and agents
need to communica te with the mast er. Since they are frequently behind firewalls
the communication is always started by them. There are no permanently open
communi cation cha nnels. Connect ions are established by the agents periodically
to send status inform ation and pool for new jobs to process. From the point of
view of the user most details are hidd en , and he can use a set 0 simple actions to
prepare and execute ap plicat ions.

Creating base images Wi th t he Ahoy client too l the user can produce base
operating syste m images on top which ap plications can be added. The aim is to
empower the user to create base images of his operating systems , thus ensur ing
that applications will run on the same environme nt . The images are minimal by
default but the user is free to add packages. T hese images are mainly produced with
tools such as yum [23] or apt [24] dep ending on the flavor of the Linux distribut ion.
Unfortunately creating such images requires privileges t hat may not be available
to the user . In t hat case pre-built images available from the Ahoy master server
may be used instead . The base images are stored in the Ahoy master reposi tory,
and become available as building blocks to create applicatio n images.

Fig. 2 . Ar chitecture di agr am

mc
sta
im

I

ins
Ho

co:
de
thi

sei
shi

st~

aCi

Dr

t he

at
on!
t h~
bel
lau
siei
for
Ah

un
tht
vir
an
as
COl

sen

the
thJ
. J
JO u

A ~
. I
IS ~

t h~
ali ~
to !

at ;
I mao
I

rna'
i

exe
eli:

....
....

IPilot §50­ --~ r-.
Dlspatch_ I :

r=:-::-:....r==--, I I

jCREAM ~ I II
..•..... •.. Adapter ~ ~Job I

.' "'~Man a g er I
....... ISSH ~ ... 'Ii II
............... Adapter c?"' or:s VMM :

.... i ,... _

Ahoy Client (desktop host)

~--="""'~O"""'ub""n-n e-r-~
,;

Ieli §3Y';

Ahoy Agent (compute host)
:••..•.•. ..•....••.••.••.••.•.•.•.":.4

IVMM §?P+!*5 Jobs ~~
: I :

1..?8....~.~.~.~.~ ..H

Exec ut ing an a p p licat io n A job execution request contains: t he nam e of the
file to be executed, a list of inp ut files and a list of output files. Additional infor­
mation regarding the job requirements can also be added such as the amount of
memory and num ber of processors. T here is no need to pass information about
the operating system software environment becau se those requir ements are already
encapsulate d in the applicat ion image . In addit ion t he mounting of volumes from
the comput ing host can also be requested. The volum e nam es must be coherent
across t he infrastructure. Eac h nam e is map ped by the ADMINS at each site into
a local dir ectory to be mounted in t he container . The mapping is defined in the
Ahoy agent configurat ion file. This feat ur e allows access to data already available

C reat ing a p p licat io n images Application images are created by combining a
base operat ing syste m image with t he user specified software. The Ahoy client
t akes as input programs or directories to be merged wit h an exist ing operating
syste m image. The operating system image is identified by it s unique nam e and
must already exist in the Ahoy serv er. The user can also specify additional software
packages to be added to the final combined image , these are inst alled via yum
or apt. The user does not need to specify t he software dep end encies since the
Ahoy client is capa ble of analyzing the input files and packages and find their
dependencies. This ensures that any require d software packages and lib raries are
added. F inally t he user may choose t he program to be execute d when t he container
is started , otherwise a wrapper will be t he defaul t executable. The Ahoy wrapper
can hide much of the det ails of down loadi ng input files and up load ing result s, in
addit ion can also be used to down load the execut able thus making the a pplicat ion
image more flexible. The act ual operation of buildin g an applicat ion image is
perform ed on the Ahoy mast er. The result ing image is then mad e available by
pushing it t o a Docker repository t o t ake advantage of t he Docker layered images.
The image can also be made available via a web server or via t he Ahoy master
itself.

34 II3ERGRID

IBERGRID 35

at the sit e. The input files can be uploaded from the Ahoy client to the Ahoy
mast er together with the job execut ion request . Altern atively the list of input files
may contain references to files available from an ext ernal ftp or web server. The
executable can be: a file previously added to the image, a file up loaded by Ahoy
client jointly with the ot her input files, or a file to be downloaded from an external
server via the Ahoy wrapper.

Upon receiving a request , the Ahoy mast er performs a valid ation and checks if
there are free resour ces cap able of executing the job. This is verified by checking
the status and capabilit ies of the Ahoy agents that are act ive and ready to pull
jobs. If enough Ahoy agen ts matching the request are available and free then the
Ahoy mast er just waits to be contacte d by one of t hem, at that moment the job
is given to t hat agent . If no resources with the required char acteristics are free,
t hen t he Ahoy master searches the list of pot ential dynamic resources that are
alive and submits the required Ahoy agents. The Ahoy master can be configure d
to over provision agents thus allowing request to be quickly served.

The Ahoy agent has two modes of ope ration. A stat ic mode where it runs as
a persist ent syst em process (daemon), and a dynami c mod e aimed to be st arted
on-demand by t he A hoy m aster. If a dedicated pool of compute hosts is needed
then these nod es can be set up in static mode. The user worksta tion can also
be set up as a static compute host. The agent is a lightweight pro cess t hat can be
laun ched manually whenever needed. The dynami c mod e is more suitab le for t ran­
sient resources such as cloud and grid computing resour ces t hat may be available
for a short peri od of time and have to be activated when needed. Current ly the
Ahoy mast er has ad ap ter s to support the activation of Ahoy agents in dynamic
mode via SSH and via the grid cream-ceoThe ad apters encapsulate the det ails of
start ing t he Ahoy agents in each type of resource. They are modular and easily
implementabl e. The Ahoy mast er its elf is also a lightweight pro cess that can be
installed and operated by an individual user to exploit resources at his disposal.
However it requires inbound network connectivity.

Cur rently, start ing the application images as containers requires pri vileges on
the compute host . Therefore one of the functions of the Ahoy agents is to allow an
unprivileged user to start the containers in a secure way. Both the A hoy m ast er and
th e Ahoy agent supports abst raction int erfaces to perform cont ainer act ions using
virtual machine man agement systems. Abstracti on int erfaces for Docker and LXC
are implemented. Deploying an agent impli es the inst allation of LXC or Docker ,
as well as the agent it self. T he installation requires privileges and therefore the
cooperation of the ADMINS.

T he abstraction interface for Docker needs to communicate with the Docker
service via its protect ed UNIX socket. For secur ity reasons only trust ed users
should have dir ect access to this socket . Therefore t he Ahoy agent must be in­
stalled under a dedicated UNIX user with access to the socket. This can be easily
accomplished by creating a dedicated unprivileged user and adding it to the docker
UNIX group. The agent can then be started by end-users through the UNIX sudo
command, which needs be configure d to start t he agent under the cont rol of the
dedicated user. This is the default approach followed by th e Ahoy mast er to start
the agents on computing hosts.

:

i

'

l

361BERGRID

T he agent can be configure d by t he A DMINS to imp ose limi ts such as memory
consumption. The specification of volume names and their mapping into local
directories is also accomplished in the same manner.

The Ahoy agent periodically contacts the master to send its stat us and check
for app licat ions to be execute d. When it gets a request it downloads t he application
image eit her from a web server or from a Docker repos ito ry. In simp le scenarios
t he A hoy master can also serve the images directly from its int ernal repository.
The image is t hen started by the agent with the appropriate parameters such
as: local volumes to be mounted, resource usage restrictions, and also with job
metadata that is translated int o environ ment variabl es. Once started, the Ahoy
wrapp er inside the container uses the environment variables to perform actions
such as downloading t he input files and starting the application. Upon complet ion
the wra pper t ra nsfers the output files back to the A hoy master or to an ftp or web
server. The A hoy agen t can t hen transfer t he container log files, noti fy the master
that t he execut ion has finished , delete the image, and event ua lly exit . The Ahoy
agent can log information about the execution of the application for accounting
and auditing purposes which becomes locally availab le to the site administrators.

T he A hoy master periodically receives inform ation about each job from t he
Ahoy agent. T his information can be polled by the A hoy client. When t he job
finished the user can download the output files from the master or ot her exte rnal
locat ion.

During execution the user can cancel the execution of it s jobs, the request is
sent to the A hoy master and relayed to the agent upon one of it s contacts. In such
case only the execut ion logs are mad e available.

3.3 Findings

Docker actions are performed by a daemon pro cess that requires root privileges to
create network bridges, manipulate firewall rul es, mount file systems, or extract
image layers with files owned by others. It uses a Unix socket for communication
with the clients using a RESTful API. However this protocol does not have au­
t hentication. Any user with access to the socket is thus able to have full control
over the Docker ope ration.

By defaul t the processes running in Docker containers appear both to the
host an d to the container as root processes. T his may lead to t raceability and
aud iti ng issues since it is not obvious who started and is actually executing the
contained pro cesses. However , it is also possible to execute Docker containers under
unprivileged UNIX user and group identi fiers. In this case both from the host and
container perspecti ves the user ru nn ing the processes will be same unp rivileged
user.

Docker can mount local directories inside containers . Therefore a user with
access to the Docker can start a container with both root privileges and a host
file system mounted in. In t his sit uation the user can from inside t he container
change t he host file system. Docker can also be told t o rem ove several important
secur ity restrict ions potenti ally allowing breaches from the container. Due to these
an d ot her features the Docker cannot be made directly available to the end-users.

In thi:
unfort

TI:
that a
contai
Proce:
vulner
acce:ss
LXC:
of the
to lim
AppA
contai
st ill fa
prefer

Dl
ations
are: II
vice n
may i
direct
passin

Tl
cesses
by thr
lems.
the cc
the di
privik
use oi
Howe'
yet w

4 (

LXC
contai
have
many

D(
thus r
The e
more
layere
and t

I13ERGRID 37

ry In this respect Docker it is not different from most vir tual machine ma nagers, bu t
.al unfortunately this const itute s a limit ation to its dir ect use by end-users.

The ability to ru n as root inside the isolated containers is an attrac t ive feature
ck that akin to convent iona l virtualization largely contributes to the versatility of the
on containers. There are however considerations t hat should be care fully evaluated.
os Processes inside containers run directly on top of the host kerne l, therefore secur ity
ry, vulnerabili ti es in the kern el can be exploited by processes inside containers to gain
ch access to the host syste m and to ot her cont ainers. There are several measur es t hat
Db LXC and Docker pe rform to miti gate this and ot her risks, such as dropping some
oy of the POSIX capabilit ies to reduce t he root pr ivileges, or the use of Seccom p
ns to limit the access to syste m calls. It is highly advisable to ena ble SELinux or
on AppAr mor in the host system to further constraint the attack sur face in case of
eb container breach. It is importan t to understand t hat the Linux containers stack is
.er st ill fairly recent and not yet complete, t herefore processes inside containers should
oy preferably run without privileges.
ng Due to the extensive secur ity restrictions imp osed on containers there are oper­
rs. ations that by default even t he root inside a container cannot perform. Examples
he are: mounting file syste m, use raw sockets, use protocols such as GRE, create de­
ob vice nodes, cha nge certain file attributes , load kern el modules. T hese limitations
lal may in some circ umstances create problems. For inst an ce using GP Us requires

direct access to devices. Fortunately many of these issues can be circumvented by
is passing appropriate directives upon container start.

ch The use of Docker wit h batch schedulers is challenging mainly becau se all pro­
cesses within containers ar e started by the Docker daemon which is not controlled
by the schedulers . T his poses addit iona l account ing an d policy enforcement prob­
lems. In this regard LXC has the advantage of not requiring a daemon thus allowing
the cont rol of the pro cesses by the scheduler. Furthermore LXC already supports
the direct execution of containers by unprivileged users while st ill ena bling root to
privileges inside the container via user namespace. This feature can simplify the ict

on use of containers with benefits in t erms of secur ity, t raceability and account ing .

LU­ However it requires both very recent Linux kernels and secur ity components not
yet widely available in t he Linux distributions. rol

.he
4 Conclusions and Future Worknd

he
ler LXC and Docker are powerful tools that ease the creation and deployment of
nd containers . However they st ill have limit ations in te rms of secur ity. Several issues
;ed have been identi fied , but LXC and Docker are st ill being heavily developed and

many of the cur rent limitations will be addressed as they become more mature.
ith Docker is cur rently more suitable to the development and execut ion of serv ices,
)st thus many of its design cha racterist ics at intended to be used by privileged users.
ier T he evolution of LXC towards dir ect usabili ty by unprivileged users seems to be
Lilt more pro mising as a method to encapsulate app lications. However the Docker

layered images are mor e flexible, and they fit very well the incremental building
rs. and transfer of applicat ions in distributed computing environments .
~se

381BERGRID

The Ahoy demonstrator is cur rently able to execute across the int end ed com­
put ing resources with the describ ed limitations. It was possible to executed several
common operat ing system environments and applications on these resources. We
aim at cont inue the development of the presented architec ture an d framework to
explore the coordinated deployment of scient ific applications across het erogeneous
comput ing resources. The next steps include: addressing t he aut hent icat ion issues,
exploit cloud resources, enhance the cur rent abst raction int erfaces and improve
the orchestration.

Acknowledgements

T his art icle was only possible due to t he finan cial supporte d provid ed by the
FEDER fund s trough the COMPETE program and by Portuguese national fund ­
ing trough the Portuguese Foundation of Science and Technology (FCT).

References

1.	 ope ra t ing sys t em-level virtualization

ht t p: / / wikip ed ia.org/ wiki/ Oper ating. system-level, virtualization

2.	 Solaris Zones ht tps:/ fj ava .net/project s/ zones
3.	 P.-H. Kamp and R. N. M. Watson: Jails: Confining t he Omnipotent Root. In P ro ­

ceedings of the 2nd Internation al SANE Conference, Maastricht , The Net herlands,
May 2000.

4.	 Op enVZ http:/ / openvz.org
5.	 Linux-Vserver http:/ /linux-vserver.org/
6.	 Linu x Containers ht t ps:/ /linuxcontainers.org
7.	 libvirt LXC container dri ver ht t p:/ /libvirt. org/drvlxc.html
8.	 Namespaces in operation

ht tps:/ /www.kernel.org/doc/Docu mentation/ cgroups / cgroups.txt

9.	 Applicati on Armor ht tp:/ / en .wikipedia .org/wiki/ App Armor

10.	 Security En hanced Linux ht tp:/ / selinuxproject .org
11.	 SECure COM Puting with filters

ht tps:/ /www.kernel.org/doc/Docu ment ation / prctl/ secco rnp.filte r. txt

12.	 chroot ht tp:/ /wikipedia .org/wiki/ Chroot
13.	 Cont rol Gr oups ht tps:/ / www.kernel.org/doc/Document ation / cgroups/ cgroups. t xt
14.	 Another Uni onFS http:/ / aufs.sourceforge.net / au fs.ht ml
15.	 Linux Capabilit ies

ht t ps:/ /www.kernel.org/pub/linux/libs/ security/ linux-privs/ kernel-2.2/ capfaq­

0.2.txt

16.	 Docker ht tp:/ / www.docker. com
17.	 Op enS tack ht t ps:/ / www.openst ack.org
18.	 Core OS http:/ / coreos.com
19.	 Ap ache Mesos http:/ /mesos.ap ache.or
20.	 Flynn https:/ /flynn.io
21.	 DEIS http: / / deis.io
22.	 Crea m Computing Element ht t p:/ / grid .pd.infn.it/ cream
23.	 Yum P ackage Man ager ht tp: / / yum.baseurl.org
24.	 Ad van ced Packaging Too l https:/ /wikLdebian .org/Apt
25.	 G. van Rossu m , P ython t uto rial, Techn ical Report CS-R9526, Cent ru m voor

Wi skunde en Inform atica (CWI), Amsterdam , May 1995.

elnfra

