IBERGRID 27

Exploring Containers for Scientific Computing

J. Gomes', J. Pina!, G. Borges!, J. Martins', N. Dias', H. Gomes!, C. Manuel®

Laboratério de Instrumentagao e Fisica Experimental de Particulas Lisboa, Portugal
jorge@lip.pt

Abstract. Researchers have access to a diversified ecosystem of comput-
ing resources ranging from notebooks to computing clusters and distributed
infrastructures. Running applications across these different environments
requires considerable effort. The Linux Containers technology allows multi-
ple operating system environments to be executed on top of a shared Linux
kernel space. It takes advantage of standard Linux kernel features to pro-
vide lightweight isolated Linux environments similar to virtual machines,
but without the overheads of conventional virtualization. In this paper we
highlight the benefits of this approach, and explore paths towards the use
of containers to simplify the packaging and execution of scientific applica-
tions.

1 Introduction

Most scientific applications are developed for Unix-like environments. Still porting
applications to each specific computing environment requires considerable effort
and expertise. Furthermore users are today faced with a wide range of computing
resources ranging from notebooks to computing clusters and distributed infras-
tructures. These resources have their own peculiarities and interfaces that often
constitute obstacles to a transparent usage.

In order to exploit the computing resources at their disposal, the researchers
need to port applications to multiple computing environments, and adapt them
each time the environment changes. This is one of the reasons behind the interest
on more flexible paradigms such as cloud computing, where users can have their
own customized environments backed by virtual machines. This flexibility comes
at a price, the scientists are then confronted with the need of managing virtual
networks, virtual storage, virtual machines and their operating systems. In addi-
tion, at each site the management of these virtual resources is often performed
differently.

Researchers thus face a complex ecosystem of heterogeneous computing re-
sources. In this context lightweight forms of operating system virtualization may
provide consistent portable run-time environments for the scientific applications,
potentially facilitating their execution across computing resources.

28 IBERGRID

2 Background

2.1 Lightweight Virtualization

Operating systems enable the coordinated exploitation of computing resources by
multiple processes. Traditionally all processes share one common operating sys-
tem configuration and compete individually for the system resources. Conventional
virtual machines are frequently used to provide better separation between sets of
activities running in the same physical machines, and to provide differentiated
system configurations tailored to each activity. However, this separation can also
be achieved in some operating systems through operating system-level virtualiza-
tion [1] with the following benefits:

— No emulation or hypervisor overheads. All virtual execution environments
share a single host kernel through process confinement.

— Multiple file system environments can be supported within a single host by
confining the processes to specific file system trees.

— Processes within virtual execution environments are transparently scheduled
and managed by the host kernel, allowing more efficient use of resources such
as memory.

— No extra resource consumption related to the simultaneous execution of mul-
tiple operating system kernels and operating system services.

— Faster provisioning and environment start-up.

The main disadvantages are: inability of running software that requires an
operating system kernel different from the one provided by the host, and exposure
of all virtual environments to security vulnerabilities in the host kernel. Both are
consequences of sharing the kernel.

2.2 State of the art

Examples of operating system-level virtualization are: Solaris Zones [2] available
on Solaris and OpenSolaris, FreeBSD Jails [3] available on FreeBSD systems, and
OpenVZ [4], Linux-VServer [5], Linux Containers (LXC) [6], and libvirt-LXC [7]
on Linux. Since most scientific computing software and infrastructures are based
on Linux, we therefore focus on Linux implementations.

Both OpenVZ and Linux-VServer are mature implementations but require
modified Linux kernels which constitutes a major obstacle to their wider adop-
tion. Conversely LXC and libvirt LXC rely on vanilla Linux kernel features and
therefore do not require modified kernels. LXC is available out of the box in many
Linux distributions, and is more mature than libvirt_LXC. Both allow the manipu-
lation of kernel features to create comprehensive contained environments, enabling
the execution of multiple Linux distributions over one single kernel. The most rel-
evant Linux kernel features for operating system-level virtualization are:

— Kernel namespaces [8]: are used to isolate a particular global system resource
making it appear to the processes within the namespace that they are using
the full resource.

IBERGRID 29

e Mount namespaces: isolate the mount points accessible to a group of pro-
cesses.

e UTS namespaces: provide hostname and domain name isolation.

e IPC namespaces: isolate interprocess communication resources such as
queues, semaphores and shared memory.

e PID namespaces: isolate process identifiers, so that processes within a
group cannot see processes in other groups, furthermore the process iden-
tifiers are remapped allowing processes within different groups to have the
same process number.

e Network namespaces: isolate network resources such as network devices,
IP addresses, and routing tables.

e User namespaces: isolate user identifiers and group identifiers. These iden-
tifiers are remapped and can be different inside and outside of the names-
pace.

— AppArmor [9] and SELinux [10]: are kernel security modules that implement
mechanisms to support mandatory access control security policies. They can
be used to protect the host system against accidental abuses from privileged
users from inside the contained environment such as changes to cgroups, or
writing into devices.

— Seccomp [11]: provides system call filtering.

— chroot [12]: provides isolated directory trees.

— cgroups [13]: provide hierarchical task grouping and per-cgroup resource ac-
counting and limits. They are used to limit block and character device access
and to suspend sets of processes. They can be further used to limit memory and
block i/o, guarantee minimum CPU shares, and to bind processes to specific
CPUs.

— POSIX capabilities [15]: split the privileges traditionally associated with the
root account into distinct units, which can be independently enabled and dis-
abled.

The availability of these features is fostering the interest around operating
system-level virtualization in Linux. Nevertheless their correct and safe use even
through tools such as LXC requires considerable knowledge and configuration.

2.3 Application Containers

Docker [16] is an open-source engine that automates the creation and deployment
of applications in lightweight portable contained environments (containers). Ini-
tially Docker relied on LXC to manipulated the necessary kernel features, but
currently it can support multiple execution drivers. It has its own native driver
named libcontainer, and its modular nature may in the future allow it to run with
other implementations (e.g. OpenVZ, FreeBSD jails, Solaris zones). Docker inher-
its many of the LXC features. However with Docker the creation of containers is
greatly automated and simplified with a higher level of abstraction.

The Docker containers encapsulate the applications payload allowing them to
run in almost any Linux host with a recent distribution. Docker is inspired in

30 IBERGRID

the intermodal shipping container metaphor, where a multiplicity of goods can
be packaged and transported via a multiplicity of means on standard containers.
The availability of a common agreed format to ship goods has simplified their
transport, storage and management. Similarly Docker offers a uniform way to
package, distribute, deploy and execute applications.

When creating a container for an application only the software components
strictly required for execution are needed. Since the operating system kernel is
shared, there is no need of having one in the containers. Similarly usual processes
that are started at boot time are also not needed. Many functions such as time
synchronization, device management, power management, network configuration
and others are simply performed by the host. Still an environment that resembles a
common Linux system can also be made available inside the containers, including:

— A network interface with an IP address.

— A dedicated file system for each container.
— A set of system devices.

— Interactive shell support via pseudo-ttys.

LXC and Docker have a modular storage architecture that supports Union
Filesystems namely AuFS [14], Snap-shotting Filesystems and copy-on-write block
devices. Docker goes further by implementing a container image format with a
layered structure. This approach allows each container file system to be mounted
as a stack of superimposed read-only layers, on top of which a read-write layer
is added. Any changes are thus performed and reflected in the read-write layer.
When execution finishes this layer can be either discarded or added to the container
image as another layer. Images are tar files that contain layers, each layer is also
a tar file.

Docker can act as an image builder automating the steps required to create
a new image that otherwise would have to be performed manually. This process
takes a Dockerfile that specifies as input an existing image to which a sequence
of actions will be applied. These are the actions that would need to be performed
manually to compile or install the required software. Moreover new files can also be
added. The image resulting from this process is a new storage layer that contains
the changes performed during the build process. Existing images can thus be used
as building blocks to create more complete images.

To facilitate image distribution and deployment Docker can push and pull
images from a remote registry. Since images are made of layers, the registry imple-
ments a transparent incremental download and upload of the images transferring
only the required layers.

2.4 Orchestration

Containers offer interesting features to support the execution of applications across
computing resources. However most implementations such as LXC, libvirt. LXC
and Docker operate at the host level as virtual machine managers. They do not
offer any orchestration or clustering features. Hence, Docker is being incorporated
in many software products such as OpenStack [17] or Apache mesos [19] allowing

IBERGRID 31

the execution of containers in clouds and dedicated clusters. Other related projects
are: CoreOS [18] a Linux distribution designed to support the execution of services
in clusters and cloud resources. CoreOS uses Docker to encapsulate and execute
services. Flynn [20] and DEIS [21] use Docker to provide platform as a service fea-
tures and scale to cloud providers. Both Flynn and DEIS use a git push deployment
model and are targeted at facilitating the flow from development to deployment.
Several other software projects around Docker are emerging. These systems are
mostly intended at creating local clusters for the execution of permanent services,
and to scale out to public clouds.

3 Computing with Containers

For scientific computing, the described tools do not currently offer a comprehen-
sive solution capable of simplifying the execution of applications across the e-
infrastructures ecosystem. In addition researchers want to focus on science instead
of computing. They require easier tools to simplify their work, enabling them
to address their scientific goals. Although cloud computing is gaining expression,
most intensive simulations and data processing continues to be performed on batch
farms. Both approaches are complementary and they will likely be used for a long
time. Therefore scientists need a simple way to execute applications across these
and other computing resources without changing them. This implies running trans-
parently on grid computing, cloud computing and other resources. Based on these
assumptions the authors developed a proof of concept aimed at testing the us-
ability of state-of-the-art containers in the IBERGRID infrastructure. The table 1
shows the software versions used in this study.

Distribution |Virtual machine manager Kernel
Centos 6.5 |Docker 0.11.1 4 execution driver 1xc-0.9.0| 2.6.32
Docker 1.0.0 + execution driver native-0.2
Centos 6.5 |[LXC 0.9.0

LXC 1.0.0

Fedora 20 |Docker 1.0.0 + execution driver native-0.2| 3.14.6
Fedora 20 |LXC 0.9.0
buntu 14.04|Docker 0.9.1 + execution driver native-0.1|3.13.0-29
buntu 14.04|LXC 1.0.3

Table 1. Software versions used in this study

fem]

c

3.1 Use case

The proof of concept is based on the following use case. The researcher uses its
own workstation to develop applications which are compute and/or data intensive.
He wants to execute those applications on local computers accessible via SSH, and
also in IBERGRID computing resources in Portugal. The IBERGRID resources are

32 IBERGRID

computing farms accessible via CREAM Computing Elements (CREAM-CE) [22].
The operating systems in the researcher workstation and in the target execution
hosts are different. He wants to execute his applications in the computing resources
at his disposal with a minimum effort.

MGR
% management containers | Computing config
~ to be exec Host
- (Ahoy
Client Intermediate Agent)
§egd i Host Host EEST ADMINS
E (Ahoy (Ahoy Computing
Client) Master) Host config
USER - _> < R (Ahoy
Agent)

Fig. 1. Context diagram

The figure 1 shows the context diagram of the proof of concept. It shows three
main components: the Ahoy client installed in the desktop computer, the Ahoy
master installed in an intermediate host, and the actual computing hosts that
execute the user applications which are launched through the Ahoy agent.

The master receives from the clients requests to perform actions on the user
behalf, including building images and submitting them for execution in compute
hosts. Those requests are validated and translated into container management ac-
tions. The agents contact the master periodically to obtain jobs for execution. The
jobs are in fact containers to be launched. The master acts as an intermediate host
between the user and the resources, hiding the details of accessing computing hosts
and managing containers. It requires inbound and outbound Internet connectivity.
A basic flow is as follows:

— Preparation of an application image:

e The user invokes the Ahoy client to prepare an application image build
request . The request is sent to the Ahoy master for processing. Therefore
the user does not need to install in his computer any software besides the
client.

e As defined in the request, the Ahoy master builds a container using a
pre-existing operating system image to which the user provided files and
software packages are added.

— Execution of the application:

e The user sends a request for application execution (job) to the Ahoy mas-
ter. The request contains: metadata describing the job namely: the name
of the application image built in the previous step, and the input data files.
The files can be sent with the request itself or can be downloaded later at
execution time.

e The request is validated, prepared and queued by the Ahoy master.

IBERGRID 33

e If needed the Ahoy master starts instances of the Ahoy agent in the com-
puting hosts via the SSH or CREAM interfaces.

e The Ahoy agent contacts the Ahoy master to get jobs for execution.

e The Ahoy agent pulls the container image and starts it with the appropri-
ate environment and restrictions.

e The user can check the job status by querying the Ahoy master which
periodically gets information from the agents.

e Upon completion the output can be uploaded to the Ahoy master or other
external destination accessible via supported protocols.

e Finally a cleanup of the computing host is performed by the agent.

Besides the user itself, in this scenario there are the following roles. The man-
ager (labeled MGR) is the person responsible for the coordinated use of the dis-
tributed resources. In his role he may need to have a tighter control of how resources
are shared and the need to implement policies and job resource requirements, there-
fore he manages the Ahoy master. The site administrators (labeled ADMINS) are
responsible for managing the actual computing hosts, namely they install the soft-
ware, perform its configuration, control the usage and ensure that usage policies
are respected. They may work in different organizations and they have a direct
concern on how and by whom their resources are used. The deployment and use
of any form of virtualization requires their acceptance and cooperation.

3.2 Architecture

The figure 2 shows an architecture designed to explore the described use case
using Linux containers. A demonstrator was developed in Python [25], the current
prototype is focused at exploring the Linux containers features. The architecture
was conceived to be generic and modular, enabling to experiment with other virtual
machine managers. The Ahoy master implements two RESTful APIs the first is
used to receive requests from the Ahoy client and the second to receive status
information, send commands and jobs to the Ahoy agents. Both clients and agents
need to communicate with the master. Since they are frequently behind firewalls
the communication is always started by them. There are no permanently open
communication channels. Connections are established by the agents periodically
to send status information and pool for new jobs to process. From the point of
view of the user most details are hidden, and he can use a set o simple actions to
prepare and execute applications.

Creating base images With the Ahoy client tool the user can produce base
operating system images on top which applications can be added. The aim is to
empower the user to create base images of his operating systems, thus ensuring
that applications will run on the same environment. The images are minimal by
default but the user is free to add packages. These images are mainly produced with
tools such as yum [23] or apt [24] depending on the flavor of the Linux distribution.
Unfortunately creating such images requires privileges that may not be available
to the user. In that case pre-built images available from the Ahoy master server
may be used instead. The base images are stored in the Ahoy master repository,
and become available as building blocks to create application images.

34 IBERGRID

C

Ahoy Client (desktop host) Ahoy Master (service host)
Tmage Job | 1]_ _ _ || Client DATABASE
Creator Runner > WebAPI S
’

’ 5
cli Pilot o
I Dispatch

Ahoy Agent (compute host)

[REAM X
~"| Adapter SS Job

<h > Manager
e e
WebAPI

>
da
1)
=
=
-..In'

...............................

Fig. 2. Architecture diagram

Creating application images Application images are created by combining a
base operating system image with the user specified software. The Ahoy client
takes as input programs or directories to be merged with an existing operating
system image. The operating system image is identified by its unique name and
must already exist in the Ahoy server. The user can also specify additional software
packages to be added to the final combined image, these are installed via yum
or apt. The user does not need to specify the software dependencies since the
Ahoy client is capable of analyzing the input files and packages and find their
dependencies. This ensures that any required software packages and libraries are
added. Finally the user may choose the program to be executed when the container
is started, otherwise a wrapper will be the default executable. The Ahoy wrapper
can hide much of the details of downloading input files and uploading results, in
addition can also be used to download the executable thus making the application
image more flexible. The actual operation of building an application image is
performed on the Ahoy master. The resulting image is then made available by
pushing it to a Docker repository to take advantage of the Docker layered images.
The image can also be made available via a web server or via the Ahoy master
itself.

Executing an application A job execution request contains: the name of the
file to be executed, a list of input files and a list of output files. Additional infor-
mation regarding the job requirements can also be added such as the amount of
memory and number of processors. There is no need to pass information about
the operating system software environment because those requirements are already
encapsulated in the application image. In addition the mounting of volumes from
the computing host can also be requested. The volume names must be coherent
across the infrastructure. Each name is mapped by the ADMINS at each site into
a local directory to be mounted in the container. The mapping is defined in the
Ahoy agent configuration file. This feature allows access to data already available

IBERGRID 35

at the site. The input files can be uploaded from the Ahoy client to the Ahoy
master together with the job execution request. Alternatively the list of input files
may contain references to files available from an external ftp or web server. The
executable can be: a file previously added to the image, a file uploaded by Ahoy
client jointly with the other input files, or a file to be downloaded from an external
server via the Ahoy wrapper.

Upon receiving a request, the Ahoy master performs a validation and checks if
there are free resources capable of executing the job. This is verified by checking
the status and capabilities of the Ahoy agents that are active and ready to pull
jobs. If enough Ahoy agents matching the request are available and free then the
Ahoy master just waits to be contacted by one of them, at that moment the job
is given to that agent. If no resources with the required characteristics are free,
then the Ahoy master searches the list of potential dynamic resources that are
alive and submits the required Ahoy agents. The Ahoy master can be configured
to over provision agents thus allowing request to be quickly served.

The Ahoy agent has two modes of operation. A static mode where it runs as
a persistent system process (daemon), and a dynamic mode aimed to be started
on-demand by the Ahoy master. If a dedicated pool of compute hosts is needed
then these nodes can be setup in static mode. The user workstation can also
be setup as a static compute host. The agent is a lightweight process that can be
launched manually whenever needed. The dynamic mode is more suitable for tran-
sient resources such as cloud and grid computing resources that may be available
for a short period of time and have to be activated when needed. Currently the
Ahoy master has adapters to support the activation of Ahoy agents in dynamic
mode via SSH and via the grid cream-ce. The adapters encapsulate the details of
starting the Ahoy agents in each type of resource. They are modular and easily
implementable. The Ahoy master itself is also a lightweight process that can be
installed and operated by an individual user to exploit resources at his disposal.
However it requires inbound network connectivity.

Currently, starting the application images as containers requires privileges on
the compute host. Therefore one of the functions of the Ahoy agents is to allow an
unprivileged user to start the containers in a secure way. Both the Ahoy master and
the Ahoy agent supports abstraction interfaces to perform container actions using
virtual machine management systems. Abstraction interfaces for Docker and LXC
are implemented. Deploying an agent implies the installation of LXC or Docker,
as well as the agent itself. The installation requires privileges and therefore the
cooperation of the ADMINS.

The abstraction interface for Docker needs to communicate with the Docker
service via its protected UNIX socket. For security reasons only trusted users
should have direct access to this socket. Therefore the Ahoy agent must be in-
stalled under a dedicated UNIX user with access to the socket. This can be easily
accomplished by creating a dedicated unprivileged user and adding it to the docker
UNIX group. The agent can then be started by end-users through the UNIX sudo
command, which needs be configured to start the agent under the control of the
dedicated user. This is the default approach followed by the Ahoy master to start
the agents on computing hosts.

36 IBERGRID

The agent can be configured by the ADMINS to impose limits such as memory
consumption. The specification of volume names and their mapping into local
directories is also accomplished in the same manner.

The Ahoy agent periodically contacts the master to send its status and check
for applications to be executed. When it gets a request it downloads the application
image either from a web server or from a Docker repository. In simple scenarios
the Ahoy master can also serve the images directly from its internal repository.
The image is then started by the agent with the appropriate parameters such
as: local volumes to be mounted, resource usage restrictions, and also with job
metadata that is translated into environment variables. Once started, the Ahoy
wrapper inside the container uses the environment variables to perform actions
such as downloading the input files and starting the application. Upon completion
the wrapper transfers the output files back to the Ahoy master or to an ftp or web
server. The Ahoy agent can then transfer the container log files, notify the master
that the execution has finished, delete the image, and eventually exit. The Ahoy
agent can log information about the execution of the application for accounting
and auditing purposes which becomes locally available to the site administrators.

The Ahoy master periodically receives information about each job from the
Ahoy agent. This information can be polled by the Ahoy client. When the job
finished the user can download the output files from the master or other external
location.

During execution the user can cancel the execution of its jobs, the request is
sent to the Ahoy master and relayed to the agent upon one of its contacts. In such
case only the execution logs are made available.

3.3 Findings

Docker actions are performed by a daemon process that requires root privileges to
create network bridges, manipulate firewall rules, mount file systems, or extract
image layers with files owned by others. It uses a Unix socket for communication
with the clients using a RESTful API. However this protocol does not have au-
thentication. Any user with access to the socket is thus able to have full control
over the Docker operation.

By default the processes running in Docker containers appear both to the
host and to the container as root processes. This may lead to traceability and
auditing issues since it is not obvious who started and is actually executing the
contained processes. However, it is also possible to execute Docker containers under
unprivileged UNIX user and group identifiers. In this case both from the host and
container perspectives the user running the processes will be same unprivileged
user.

Docker can mount local directories inside containers. Therefore a user with
access to the Docker can start a container with both root privileges and a host
file system mounted in. In this situation the user can from inside the container
change the host file system. Docker can also be told to remove several important
security restrictions potentially allowing breaches from the container. Due to these
and other features the Docker cannot be made directly available to the end-users.

IBERGRID 37

In this respect Docker it is not different from most virtual machine managers, but
unfortunately this constitutes a limitation to its direct use by end-users.

The ability to run as root inside the isolated containers is an attractive feature
that akin to conventional virtualization largely contributes to the versatility of the
containers. There are however considerations that should be carefully evaluated.
Processes inside containers run directly on top of the host kernel, therefore security
vulnerabilities in the kernel can be exploited by processes inside containers to gain
access to the host system and to other containers. There are several measures that
LXC and Docker perform to mitigate this and other risks, such as dropping some
of the POSIX capabilities to reduce the root privileges, or the use of Seccomp
to limit the access to system calls. It is highly advisable to enable SELinux or
AppArmor in the host system to further constraint the attack surface in case of
container breach. It is important to understand that the Linux containers stack is
still fairly recent and not yet complete, therefore processes inside containers should
preferably run without privileges.

Due to the extensive security restrictions imposed on containers there are oper-
ations that by default even the root inside a container cannot perform. Examples
are: mounting file system, use raw sockets, use protocols such as GRE, create de-
vice nodes, change certain file attributes, load kernel modules. These limitations
may in some circumstances create problems. For instance using GPUs requires
direct access to devices. Fortunately many of these issues can be circumvented by
passing appropriate directives upon container start.

The use of Docker with batch schedulers is challenging mainly because all pro-
cesses within containers are started by the Docker daemon which is not controlled
by the schedulers. This poses additional accounting and policy enforcement prob-
lems. In this regard LXC has the advantage of not requiring a daemon thus allowing
the control of the processes by the scheduler. Furthermore LXC already supports
the direct execution of containers by unprivileged users while still enabling root
privileges inside the container via user namespace. This feature can simplify the
use of containers with benefits in terms of security, traceability and accounting.
However it requires both very recent Linux kernels and security components not
yet widely available in the Linux distributions.

4 Conclusions and Future Work

LXC and Docker are powerful tools that ease the creation and deployment of
containers. However they still have limitations in terms of security. Several issues
have been identified, but LXC and Docker are still being heavily developed and
many of the current limitations will be addressed as they become more mature.

Docker is currently more suitable to the development and execution of services,
thus many of its design characteristics at intended to be used by privileged users.
The evolution of LXC towards direct usability by unprivileged users seems to be
more promising as a method to encapsulate applications. However the Docker
layered images are more flexible, and they fit very well the incremental building
and transfer of applications in distributed computing environments.

38 IBERGRID

The Ahoy demonstrator is currently able to execute across the intended com-
puting resources with the described limitations. It was possible to executed several
common operating system environments and applications on these resources. We
aim at continue the development of the presented architecture and framework to
explore the coordinated deployment of scientific applications across heterogeneous
computing resources. The next steps include: addressing the authentication issues,
exploit cloud resources, enhance the current abstraction interfaces and improve
the orchestration.

Acknowledgements

This article was only possible due to the financial supported provided by the
FEDER funds trough the COMPETE program and by Portuguese national fund-
ing trough the Portuguese Foundation of Science and Technology (FCT).

References

1. operating system-level virtualization
http://wikipedia.org/wiki/Operating_system-level_virtualization

2. Solaris Zones https://java.net/projects/zones

3. P.-H. Kamp and R. N. M. Watson: Jails: Confining the Omnipotent Root. In Pro-

ceedings of the 2nd International SANE Conference, Maastricht, The Netherlands,

May 2000.

OpenV?Z http://openvz.org

Linux-Vserver http://linux-vserver.org/

Linux Containers https://linuxcontainers.org

libvirt LXC container driver http://libvirt.org/drvlxc.html

Namespaces in operation

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

9. Application Armor http://en.wikipedia.org/wiki/AppArmor

10. Security Enhanced Linux http://selinuxproject.org

11. SECure COMPuting with filters
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

12. chroot http://wikipedia.org/wiki/Chroot

13. Control Groups https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

14. AnotherUnionF'S http://aufs.sourceforge.net/aufs.html

15. Linux Capabilities
https://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.2 /capfaq-
0.2.txt

16. Docker http://www.docker.com

17. OpenStack https://www.openstack.org

18. CoreOS http://coreos.com

19. Apache Mesos http://mesos.apache.or

20. Flynn https://flynn.io

21. DEIS http://deis.io

22. Cream Computing Element http://grid.pd.infn.it/cream

23. Yum Package Manager http://yum.baseurl.org

24. Advanced Packaging Tool https://wiki.debian.org/Apt

25. G. van Rossum, Python tutorial, Technical Report CS-R9526, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, May 1995.

i B R

