Detector Alignment

September 24, 2015

Introduction

You have seen an event display with some tracks reconstructed...

But how to make track?!

The Simplest Detector

- Passing charged particle will 'fire a wire'
- There is also a noise and a wire can be fired randomly with some probability
- Basically, based on the wire numbers at different position along the beam line one must decide if the track can be build...

Tracking...

- Select 'pivot points', select route, add hits to a track...
- Sounds simple, but:
- usually $10 x$ hits than on the figure
- tracks are not necessary straight lines (magnetic field)
- one needs to bridge tracks segments through the magnet
- detectors are not aligned perfectly ...

Detector Alignment

- Detector size $5 m \times 3 m$
- Detector weight 400kg
- You have to hang it: 1.5 m above the ground 20 m in the N direction away from edge of the white board.
- Question: How precisely can you do it?!

Detector Alignment cont.

- More often than not, detectors are misalignment by $1-2 \mathrm{~mm}$
- Best COMPASS detectors have resolution of $5 \mu \mathrm{~m}$.
- If such detector is shifted by 1 mm , it means that for a given track instead of signal in a wire 97-103 one of 297-303 will fire!
- In such condition there is no chance to assign correct hit to a track!
- Mechanically it would be extremely costly to improve the situation...

$\|_{1}$

Thermal Expansion...

- Suppose that you somehow managed to put your detector withing a few μm from the desired place...
- Aluminum is relatively 'low cost' and 'low weight' material,
- Detector frames are often build from aluminum
- Its thermal expansion coefficient is $2.3 \cdot 10^{-5} 1 / \mathrm{K}$
- There is about 10 degree difference between day and night
- A 5 m long detector can shrink more than a 1 mm !
- Basically one is almost at the starting point...
- As a results alignment is done software-wise
- Sometimes a new alignment is needed every 30 min - 1 h

The Simplest Method...

- Low intensity run - one track in the spectrometer
- Two detectors are assumed as pivot points (they will not move)
- Hits in these detectors are used to make a track
- For any other detector one checks the distance is measured between the expected track position and the closest fired wire
- Some spectra for detector miss-aligned by 10 wires and having 0%, 3%, and 10% of a noise

The Simplest Method - limitations

- The method is simple, but:
- Detector may not only be miss-aligned in only one coordinate
- can be shifted perpendicularly to the wires
- can be rotated by any of the 3 projections (only 1 rotation is really important)
- can be shifted along the beam
- or distance between the wires is different than it is expected

Possible Miss-alignments

How the True Alignment Is Done...

- One tries to simultaneously fit x, y, z rotation and pitch of the detectors.
- To have analytical solution problem has to be linearized e.g. $\sin (\theta) \approx \theta$
- One builds set of equations to compare model with real measurement $x_{1}+\Delta x_{1}+y_{1} \Delta \theta_{1}+\ldots-A_{1} z-B_{1}=u_{11}$
$x_{2}+\Delta x_{2}+y_{2} \Delta \theta_{2}+\ldots-A_{1} z-B_{1}=u_{21}$.
$x_{n}+\Delta x_{n}+y_{n} \Delta \theta_{n}+\ldots-A_{1} z-B_{1}=u_{n 1}$
$x_{1}+\Delta x_{1}+y_{1} \Delta \theta_{1}+\ldots-A_{2} z-B_{2}=u_{12}$.

$$
x_{n}+\Delta x_{n}+y_{n} \Delta \theta_{n}+\ldots-A_{m} z-B_{m}=u_{n m}
$$

- This linear algebra problem has an analytical solution.
- There is only one small detail...

Matrix Inversion

- To solve a linear equation system certain matrix has to be inverted
- We have 300 detectors planes and want align 5 parameters and we use 100000 tracks...
- The matrix we should invert can easily have a few million rows
- In general the matrix inversion is $O\left(N^{3}\right)$ process, and this means that the matrix inversion on normal PC would take a few weeks...
- BTW. There are faster algorithms to invert matrices...

Mathematical Trick...

- The matrix has a special structure
- V. Blobel has shown how to invert it much faster
- In reality only matrix of the size $(300 \times 5) *(300 * 5)$ and $100000(2 \times 2)$ matrices has to be inverted. This take a few seconds.

You Think You Are Done...

- ... and then you switch on magnetic field...
- Different detectors types behave differently in the magnetic field...

Instead of Summary

- Gain due to presented alignment method vs. the simplest one

	OLD	NEW	RATIO
tracks/events	1.71	3.09	1.8
$\chi^{2} /$ ndf	8.0	3.1	2.6
Interaction vertex (\%)	36%	45%	1.25
$\mu, \mu^{\prime}(\%)$	14	33	2.3

