
32. Monte Carlo techniques 132. MONTECARLOTECHNIQUESRevised July 1995 by S. Youssef (SCRI, Florida State University).Updated February 2000 by R. Cousins (UCLA) in consultation withF. James (CERN).Monte Carlo techniques are often the only practical way toevaluate di�cult integrals or to sample random variables governedby complicated probability density functions. Here we describe anassortment of methods for sampling some commonly occurringprobability density functions.32.1. Sampling the uniform distributionMost Monte Carlo sampling or integration techniques assume a \random numbergenerator" which generates uniform statistically independent values on the half openinterval [0; 1). There is a long history of problems with various generators on a �nitedigital computer, but recently, the RANLUX generator [1] has emerged with a solidtheoretical basis in chaos theory. Based on the method of L�uscher, it allows the user toselect di�erent quality levels, trading o� quality with speed.Other generators are also available which pass extensive batteries of tests for statisticalindependence and which have periods which are so long that, for practical purposes, valuesfrom these generators can be considered to be uniform and statistically independent. Inparticular, the lagged-Fibonacci based generator introduced by Marsaglia, Zaman, andTsang [2] is e�cient, has a period of approximately 1043; produces identical sequenceson a wide variety of computers and, passes the extensive \DIEHARD" battery oftests [3]. Many commonly available congruential generators fail these tests and often havesequences (typically with periods less than 232) which can be easily exhausted on moderncomputers and should therefore be avoided [4].32.2. Inverse transform methodIf the desired probability density function is f(x) on the range �1 < x < 1, itscumulative distribution function (expressing the probability that x � a) is given byEq. (30:6). If a is chosen with probability density f(a), then the integrated probabilityup to point a, F (a), is itself a random variable which will occur with uniform probabilitydensity on [0; 1]. If x can take on any value, and ignoring the endpoints, we can then �nda unique x chosen from the p.d.f. f(s) for a given u if we setu = F (x) ; (32:1)provided we can �nd an inverse of F , de�ned byx = F�1(u) : (32:2)This method is shown in Fig. 32.1a. It is most convenient when one can calculate byhand the inverse function of the inde�nite integral of f . This is the case for some commonfunctions f(x) such as exp(x), (1 � x)n, and 1=(1 + x2) (Cauchy or Breit-Wigner),although it does not necessarily produce the fastest generator. CERNLIB containsroutines to implement this method numerically, working from functions or histograms.CITATION: K. Hagiwara et al., Physical Review D66, 010001-1 (2002)available on the PDG WWW pages (URL: http://pdg.lbl.gov/) June 18, 2002 13:58

2 32. Monte Carlo techniques

0

1

0

1

F(x)

F(x)

} f (xk)

x
xk+1xk

u

x
x = F−1(u)

Continuous

distribution

Discrete

distribution

u

(a)

(b)

Figure 32.1: Use of a random number u chosen from a uniform distribution (0,1)to �nd a random number x from a distribution with cumulative distribution functionF (x).For a discrete distribution, F (x) will have a discontinuous jump of size f(xk) at eachallowed xk; k = 1; 2; � � �. Choose u from a uniform distribution on (0,1) as before. Findxk such that F (xk�1) < u � F (xk) � Prob (x � xk) = kXi=1 f(xi) ; (32:3)then xk is the value we seek (note: F (x0) � 0). This algorithm is illustrated in Fig. 32.1b.32.3. Acceptance-rejection method (Von Neumann)Very commonly an analytic form for F (x) is unknown or too complex to work with, sothat obtaining an inverse as in Eq. (32:2) is impractical. We suppose that for any givenvalue of x the probability density function f(x) can be computed and further that enoughis known about f(x) that we can enclose it entirely inside a shape which is C times aneasily generated distribution h(x) as illustrated in Fig. 32.2.Frequently h(x) is uniform or is a normalized sum of uniform distributions.Note that both f(x) and h(x) must be normalized to unit area and therefore theproportionality constant C > 1. To generate f(x), �rst generate a candidate x accordingto h(x). Calculate f(x) and the height of the envelope C h(x); generate u and testif uC h(x) � f(x). If so, accept x; if not reject x and try again. If we regard x anduC h(x) as the abscissa and ordinate of a point in a two-dimensional plot, these pointsJune 18, 2002 13:58

32. Monte Carlo techniques 3
C h(x)

C h(x)

f (x)

x

f (x)

(a)

(b)

Figure 32.2: Illustration of the acceptance-rejection method. Random points arechosen inside the upper bounding �gure, and rejected if the ordinate exceeds f(x).Lower �gure illustrates importance sampling.will populate the entire area C h(x) in a smooth manner; then we accept those whichfall under f(x). The e�ciency is the ratio of areas, which must equal 1=C; therefore wemust keep C as close as possible to 1.0. Therefore we try to choose C h(x) to be as closeto f(x) as convenience dictates, as in the lower part of Fig. 32.2. This practice is calledimportance sampling, because we generate more trial values of x in the region where f(x)is most important.32.4. AlgorithmsAlgorithms for generating random numbers belonging to many di�erent distributionsare given by Press [5], Ahrens and Dieter [6], Rubinstein [7], Everett and Cashwell [8],Devroye [9], and Walck [10]. For many distributions alternative algorithms exist, varyingin complexity, speed, and accuracy. For time-critical applications, these algorithms maybe coded in-line to remove the signi�cant overhead often encountered in making functioncalls. Variables named \u" are assumed to be independent and uniform on (0,1). (Hence,u must be veri�ed to be non-zero where relevant.)In the examples given below, we use the notation for the variables and parametersgiven in Table 30.1.
June 18, 2002 13:58

4 32. Monte Carlo techniques32.4.1. Exponential decay:This is a common application of the inverse transform method, also using the fact that(1� u) is uniform if u is uniform. To generate decays between times t1 and t2 accordingto f(t) = exp(�t=�): let r2 = exp(�t2=�) and r1 = exp(�t1=�); generate u and lett = �� ln(r2 + u(r1 � r2)): (32:4)For (t1; t2) = (0;1), we have simply t = �� ln u. (See also Sec. 32.4.6.)32.4.2. Isotropic direction in 3D:Isotropy means the density is proportional to solid angle, the di�erential element ofwhich is d
 = d(cos �)d�. Hence cos � is uniform (2u1 � 1) and � is uniform (2�u2). Foralternative generation of sin � and cos�, see the next subsection.32.4.3. Sine and cosine of random angle in 2D:Generate u1 and u2. Then v1 = 2u1 � 1 is uniform on (�1,1), and v2 = u2 is uniformon (0,1). Calculate r2 = v21 + v22 . If r2 > 1, start over. Otherwise, the sine (S) and cosine(C) of a random angle are given byS = 2v1v2=r2 and C = (v21 � v22)=r2 : (32:5)32.4.4. Gaussian distribution:If u1 and u2 are uniform on (0,1), thenz1 = sin 2�u1p�2 lnu2 and z2 = cos 2�u1p�2 ln u2 (32:6)are independent and Gaussian distributed with mean 0 and � = 1.There are many faster variants of this basic algorithm. For example, constructv1 = 2u1 � 1 and v2 = 2u2 � 1, which are uniform on (�1,1). Calculate r2 = v21 + v22 , andif r2 > 1 start over. If r2 < 1, it is uniform on (0,1). Thenz1 = v1s�2 ln r2r2 and z2 = v2s�2 ln r2r2 (32:7)are independent numbers chosen from a normal distribution with mean 0 and variance 1.z0i = �+ �zi distributes with mean � and variance �2.A recent implementation of the fast algorithm of Leva Ref. 11 is in CERNLIB.For a multivariate Gaussian, see the algorithm in Ref. 12.
June 18, 2002 13:58

32. Monte Carlo techniques 532.4.5. �2(n) distribution:For n even, generate n=2 uniform numbers ui; theny = �2 ln0@n=2Yi=1ui1A is �2(n) : (32:8)For n odd, generate (n� 1)=2 uniform numbers ui and one Gaussian z as in Sec. 32.4.4;then y = �2 ln0@(n�1)=2Yi=1 ui1A+ z2 is �2(n) : (32:9)For n& 30 the much faster Gaussian approximation for the �2 may be preferable:generate z as in Sec. 32.4.4 and usey = �z +p2n� 1 �2 =2; if z < �p2n� 1 reject and start over.32.4.6. Gamma distribution:All of the following algorithms are given for � = 1. For � 6= 1, divide the resultingrandom number x by �.� If k = 1 (the exponential distribution), accept x = �(lnu). (See also Sec. 32.4.1.)� If 0 < k < 1, initialize with v1 = (e+ k)=e (with e = 2:71828::: being the natural logbase). Generate u1, u2. De�ne v2 = v1u1.Case 1: v2 � 1. De�ne x = v1=k2 . If u2 � e�x, accept x and stop, else restartby generating new u1, u2.Case 2: v2 > 1. De�ne x = �ln([v1 � v2]=k). If u2 � xk�1, accept x and stop,else restart by generating new u1, u2. Note that, for k < 1, the probabilitydensity has a pole at x = 0, so that return values of zero due to under
ow mustbe accepted or otherwise dealt with.� Otherwise, if k > 1, initialize with c = 3k � 0:75. Generate u1 and computev1 = u1(1 � u1) and v2 = (u1 � 0:5)pc=v1. If x = k + v2 � 1 � 0, go back andgenerate new u1; otherwise generate u2 and compute v3 = 64v31u22. If v3 � 1� 2v22=xor if ln v3 � 2f[k � 1] ln[x=(k � 1)]� v2g, accept x and stop; otherwise go back andgenerate new u1.32.4.7. Binomial distribution:If p � 1=2, iterate until a successful choice is made: begin with k = 1; compute Pk = qn[for k 6= 1 use Pk � f(rk;n; p); and store Pk into B; generate u. If u � B accept rk =k � 1 and stop; otherwise increment k by 1 and compute next Pk and add to B; generatea new u and repeat. If we arrive at k = n+ 1, stop and accept rn+1 = n. If p > 1=2 itwill be more e�cient to generate r from f(r;n; q), i.e., with p and q interchanged, andthen set rk = n� r. June 18, 2002 13:58

6 32. Monte Carlo techniques32.4.8. Poisson distribution:Iterate until a successful choice is made: Begin with k = 1 and set A = 1 to start.Generate u. Replace A with uA; if now A < exp(��), where � is the Poisson parameter,accept nk = k � 1 and stop. Otherwise increment k by 1, generate a new u and repeat,always starting with the value of A left from the previous try. For large �(& 10) it maybe satisfactory (and much faster) to approximate the Poisson distribution by a Gaussiandistribution (see our Probability chapter, Sec. 30.4.3) and generate z from f(z;0,1);then accept x = max(0; [� + zp� + 0:5]) where [] signi�es the greatest integer � theexpression. [13]32.4.9. Student's t distribution:For n > 0 degrees of freedom (n not necessarily integer), generate x from aGaussian with mean 0 and �2 = 1 according to the method of 32.4.4. Next generatey, an independent gamma random variate with k = n=2 degrees of freedom. Thenz = xp2n=py is distributed as a t with n degrees of freedom.For the special case n = 1, the Breit-Wigner distribution, generate u1 and u2; setv1 = 2u1 � 1 and v2 = 2u2 � 1. If v21 + v22 � 1 accept z = v1=v2 as a Breit-Wignerdistribution with unit area, center at 0.0, and FWHM 2.0. Otherwise start over. Forcenter M0 and FWHM �, use W = z�=2 +M0.References:1. F. James, Comp. Phys. Comm. 79 111 (1994), based on M. L�uscher, Comp. Phys.Comm. 79 100 (1994). This generator is available as the CERNLIB routine V115,RANLUX.2. G. Marsaglia, A. Zaman, and W.W. Tsang, Towards a Universal RandomNumber Generator, Supercomputer Computations Research Institute, Florida StateUniversity technical report FSU-SCRI-87-50 (1987). This generator is available asthe CERNLIB routine V113, RANMAR, by F. Carminati and F. James.3. Much of DIEHARD is described in: G. Marsaglia, A Current View of RandomNumber Generators, keynote address, Computer Science and Statistics: 16thSymposium on the Interface, Elsevier (1985).4. Newer generators with periods even longer than the lagged-Fibonacci basedgenerator are described in G. Marsaglia and A. Zaman, Some Portable Very-Long-Period Random Number Generators, Compt. Phys. 8, 117 (1994). The NumericalRecipes generator ran2 [W.H. Press and S.A. Teukolsky, Portable Random NumberGenerators, Compt. Phys. 6, 521 (1992)] is also known to pass the DIEHARD tests.5. W.H. Press et al., Numerical Recipes (Cambridge University Press, New York, 1986).6. J.H. Ahrens and U. Dieter, Computing 12, 223 (1974).7. R.Y. Rubinstein, Simulation and the Monte Carlo Method (John Wiley and Sons,Inc., New York, 1981).
June 18, 2002 13:58

32. Monte Carlo techniques 78. C.J. Everett and E.D. Cashwell, A Third Monte Carlo Sampler, Los Alamos reportLA-9721-MS (1983).9. L. Devroye, Non-Uniform Random Variate Generation (Springer-Verlag, New York,1986).10. Ch. Walck, Random Number Generation, University of Stockholm Physics Depart-ment Report 1987-10-20 (Vers. 3.0).11. J.L. Leva, ACM Trans. Math. Softw. 18 449 (1992). This generator has beenimplemented by F. James in the CERNLIB routine V120, RNORML.12. F. James, Rept. on Prog. in Phys. 43, 1145 (1980).13. This generator has been implemented by D. Drijard and K. K�olbig in the CERNLIBroutine V136, RNPSSN.

June 18, 2002 13:58

