AMS RICH Monte Carlo simulation: new results

Luísa Arruda, Fernando Barão, João Borges, Patrícia Gonçalves, <u>Rui Pereira</u>

(LIP - Lisbon)

Isotope MC simulation

- Three elements tested:
 - ◆ Z=1 Hydrogen (p, d): 1.6 x 10⁷ events \approx 1 day
 - ◆ Z=2 Helium (³He, ⁴He): 2.0 x 10⁶ events = 1 day
 - ◆ Z=4 Beryllium (⁹Be, ¹⁰Be): 8.5 x 10⁵ events = 1 year
- Two setups tested:
 - AGL103 + NaF
 - AGL105 + NaF

Isotope MC simulation

- Separate fits for AGL & NaF populations, one fit for each energy channel
- Fits performed for H to get isotopic abundances:
 - Two kinds of distribution tested:
 - Mass distributions
 - \star Inverse mass distributions \rightarrow better
 - Gaussian fit performed on proton peak
 - Fit to gaussian + noise (assumed constant in peak region) performed for deuteron peak
- Fits performed for He, Be: \Rightarrow see my talk at CERN, Oct. 2004
 - ♦ 2 gaussians in mass spectrum, fixed width ratio:
 - $\star \sigma_1 / \sigma_2 = m_1 / m_2$

- AGL: Clear deuteron peaks in several energy channels
- NaF: Peaks are much harder to measure

AMS RICH meeting, Madrid, 25-26 November 2004

- Two possible methods to calculate d/p ratio from fits:
 - Directly from gaussian integrals

$$r = \frac{A_d}{A_p}$$

• Using peak heights + expected σ_d/σ_p ratio

$$r = \frac{h_d}{h_p} \times \left(\frac{\boldsymbol{s}_d}{\boldsymbol{s}_p}\right)_{\text{exp}}$$

Results for d/p ratio using gaussian integrals:

Better results using peak heights and expected ratios in σ :

- Calculated from no. of reconstructed vs. simulated events in each energy channel
- All three elements studied: H, He and Be
- Efficiencies also calculated for each isotope separately, no difference found between isotopes with same $E_{kin}/nucleon (\equiv same \beta)$

AGL103 - comparison between H, He, Be:

AMS RICH meeting, Madrid, 25-26 November 2004

AGL105 - comparison between H, He, Be:

AMS RICH meeting, Madrid, 25-26 November 2004

NaF - comparison between H, He, Be:

AMS RICH meeting, Madrid, 25-26 November 2004

Hydrogen - comparison between AGL103, AGL105:

Helium - comparison between AGL103, AGL105:

Beryllium - comparison between AGL103, AGL105:

Results for high E_{kin} (in %), r < 60 cm:</p>

Isotope	Cut	AGL103	AGL105	NaF
р	3 hits	62.6	77.8	23.7
	4 hits	48.0	67.3	11.2
⁴He	3 hits	90.6	94.2	84.1
	4 hits	89.2	93.7	76.3
⁹ Be	3 hits	91.4	94.0	92.9
	4 hits	91.3	94.0	92.9

Energy cuts E_{kin} > 10 GeV/n (AGL) E_{kin} > 12 GeV/n (NaF)

Results for high E_{kin} (in %), r < 58 cm:</p>

Isotope	Cut	AGL103	AGL105	NaF	
р	3 hits	64.8	80.0	23.7	
	4 hits	49.7	68.9	11.2	
⁴He	3 hits	92.7	96.2	84.1	
	4 hits	91.4	95.7	76.3	
⁹ Be	3 hits	93.6	96.0	92.9	
	4 hits	93.5	96.0	92.9	

AGL efficiency increase between 1.6% and 2.2%

Energy cuts E_{kin} > 10 GeV/n (AGL) E_{kin} > 12 GeV/n (NaF)

Conclusions

- Results of Monte Carlo simulation of H, He and Be events were analysed
- Isotopic separation was performed
 - ♦ Good results for ³He/⁴He, ⁹Be/¹⁰Be
 - Low ratio (~10⁻²) poses a problem for deuterium, but rough measurements may be obtained from a single day of data
- Reconstruction efficiencies were determined for a large energy region
 - High efficiencies for He, Be (over 90% in AGL, over 75% for He and over 90% for Be in NaF)
 - Lower efficiencies for H (10-25% in NaF, 50-80% in AGL, depending on radiator, cuts)

Future work

- Changes in cuts to improve deuteron signal/noise ratio
- Study of reconstruction efficiency as function of angle, impact point
- To be continued...