Updates of the study of the aerogel uniformity on the basis of Test Beam data

CIEMAT, Madrid 25/11/2004

E. Lanciotti (CIEMAT)

Elisa.Lanciotti@ciemat.es

Index

- Short summary of the results presented in last meeting of Oct. 8 at CERN: uniformity estimation on the basis of the runs of scan. The study is feasible only for Nov 1.03 and Matsu 1.03, but not for Nov 1.05
- A second method for estimating photon yield and velocity (see C. Delgado talk) uniformity, valid for all the radiators: we consider a single run and study the uniformity in the region around the beam vertex
- Some implications of radiator homogeneity with the charge resolution

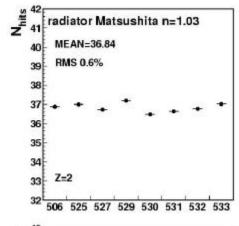
CERN meeting Conclusions

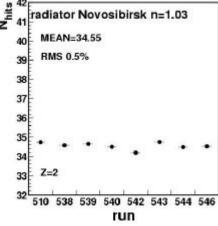
Summary of some parameters relative to He

l Radiator Matsu. 1.03 and
Novos. 1.03 have very
similar photon yield and
thus similar results
Dadiator Novas 1 05 has

Radiator Novos. 1.05 has a
higher photon yield and
better charge resolution
The a ! for ween! to le o a . le o a

better charge resolution
The uniformity has been
estimated on the basis of
the runs of scan. For nov
1.05 the tile uniformity has
not been proved

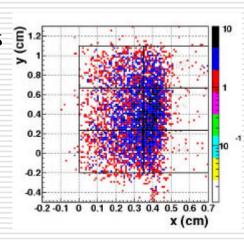

	Agl	N _{hits}	s(Z)	Uniformity
	CIN 1.03	34.55 34.20	0.184 0.183	0.5%
	MNN 1.03	36.84 37.12	0.180 0.178	0.6%
	CIN 1.05	47.10 47.25	0.155 0.155	?


Black data, blue MC

Charge uniformity (review)

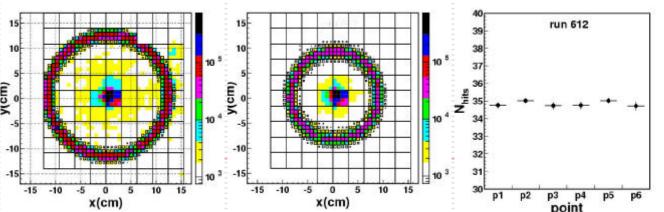
- To estimate the aerogel uniformity we plot the mean number of hits for the He sample in each run
- □ The tile of Agl Novos. 1.05 too small (5 cm side) to prove the uniformity

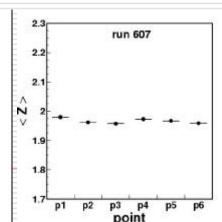
	Num of hits	uniformity
Matsu. 1.03	36.84±0.08	0.6%
Novos 1.03	34.55±0.06	0.5%


Charge uniformity on 3 different spatial scales

- □ 1- runs of scan 2-3 cm
 - Dedicated runs, high statistics ©
 - Systematic error of setup due to external intervention between runs, tile positioning ⊗
 - Radiator Nov 1.05 tile too small, photon loss at radiator border ⊗
- 2- runs with extended beam 0.5 cm
 - Same run, same tile position ©
 - but less statistics ⊗
- 3- runs with 'point-like' beam
 - Same situation than runs with extended beam. Useful to investigate possible no-uniformity at small (<1mm) scale

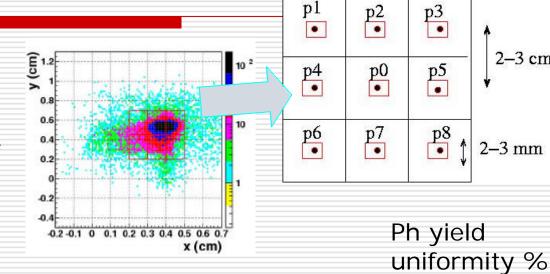
Runs of radiator Novos n=1.03 and n=1.05 with an extended beam

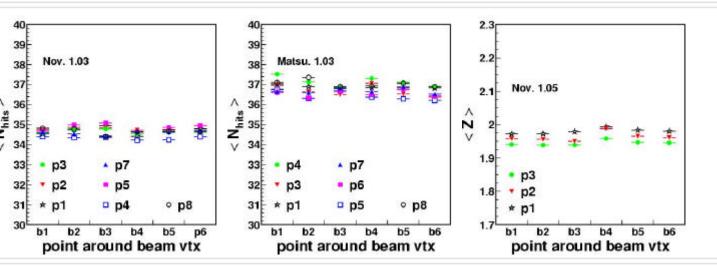

- •Novos 1.03 run has rings fully contained: ph. Yield uniformity is estimated with the number of hits in the ring
- For Novos 1.05 run part of the ring is not contained: ph yield computed from the reconstructed charge


Beam section about 0.7x1.2 cm²

ph yield uniformity%:

Nov.	0.37±
1.03	0.05
Nov.	0.80±
1.05	0.10



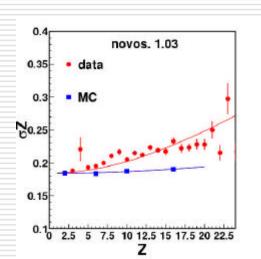

Point-like beam runs

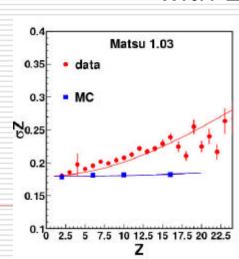
The beam section using the STD track determination is $0.3x0.5 \text{ cm}^2$

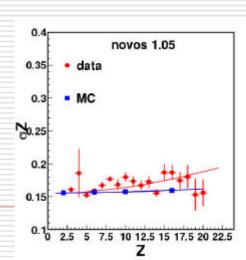
For each run, we scan 6 points in the area around the beam vertex, b1,b2..b6

Results:

Nov.	0.32±
1.03	0.04
Matsu	0.45±
1.03	0.15
Nov.	<0.88
1.05	0.22


2-3 cm


2-3 mm


Charge resolution for the 3 radiators: data s MC and fit with a 2 parameter function

The charge resolution is fitted with a curve computed as the propagated error on Z

- 1 term: depends on the s.p.e. resolution, on the Nexp and is the leading term at low Z
- 2 term: depends on the possible systematic errors in the charge reconstruction (i.e. radiator non-homogeneities) and it increases with Z.

Charge resolution: results of the fit

The term due to the s.p.e. resolution has the same value in data and MC.

rom TB calibration s/Q = 59%

The term due to the systematic error of the reconstruction is larger in data than in MC

Possible causes:

- Radiator no homogenity
- Periodical drift of Gains
- Any other effect which is correlated for all the channels

	SPE res.	Err(Nexp)
	(%)	(%)
Nov	64.6±0.3	1.67±0.04
1.03	64.3±1.2	0.62±0.09
Mnn	64.3±0.4	1.80±0.04
1.03	64.0±1.0	0.42±0.11
Nov	60.9±0.8	1.06±0.10
1.05	61.8±1.1	0.42±0.09

Black: data, red: MC

conclusions

- The aerogel uniformity has been tested with 3 methods, on 3 spatial scales
- All the radiators have a uniformity better than 1%
- The charge resolution in data and MC has been compared and fitted with a 2 parameter function. The comparison with the MC, points out that in the data resolution deteriorates faster, due to a systematic error on ph yield determination.
- Radiator unhomogeneity could be the cause of this difference between data and MC