Geometrical Acceptance of the Cherenkov Pattern

Luísa Arruda, Fernando Barão
LIP (Laboratório de Instrumentação e Física de Partículas)
-Av. Elias Garcia, 14-1¹000-149 Lisbon

Photon pattern tracing

- Overview

Geometrical Calculations:

- Particle's frame
- Detector's frame
- Refraction
- Reflection
- Basis impact

Acceptances Calculation
Results:

- Events and its acceptances
- Acceptances distributions
- Simulation results/calculation
- Applicability

*Photon Pattern Tracing

When a charged particle crosses the radiator with a speed greater than $c_{\text {medium }}$, a certain number of photons is emitted isotropically around the particle with an aperture angle θ_{c}

The photons interact through:

* refraction on radiator boundary (and eventually total reflection, depending on their incident angle θ_{i})
or
* reflection on conical mirror

A hit pattern is produced in PMT matrix with a Geometrical Acceptance depending on the radiator's impact point P, particles direction (θ, ϕ) and Cherenkov angle θ_{c}.

Particle's frame:
The parametric equations of the photon in terms of the azimutal angle φ are:

$$
\vec{g}^{\prime}\left(\theta_{c}, \varphi\right)=\left(\sin \theta_{c} \cos \varphi, \sin \theta_{c} \sin \varphi, \cos \theta_{c}\right)
$$

Geometrical Calculations

Particle's frame/Detector's frame

Transformation matrix elements: $\quad T_{\mathrm{i}, \mathrm{j}}=\vec{e}_{\mathrm{i}} \cdot \vec{e}_{\mathrm{j}^{\prime}}$
$\vec{e}_{\mathrm{i}}, \vec{e}_{\mathrm{j}^{\prime}}$: directions of the two frames axis

S' particle's frame
S detector's frame

$$
\begin{array}{ll}
\vec{e}_{x}=(1,0,0) & \vec{e}_{z^{\prime}}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \\
\vec{e}_{y}=(0,1,0) & \vec{e}_{y^{\prime}}=(\sin \phi,-\cos \phi, 0) \\
\vec{e}_{z}=(0,0,1) & \vec{e}_{x^{\prime}}=\vec{e}_{y^{\prime}} \times \vec{e}_{z^{\prime}}=(-\cos \theta \cos \phi,-\cos \theta \sin \phi, \sin \theta)
\end{array}
$$

Geometrical Calculations

The photon's direction is tranformed and in the detector's comes:

$$
\vec{g} \equiv \underbrace{}_{\mathrm{T}_{\mathrm{i}, \mathrm{j}}} \underbrace{\left(\begin{array}{l}
g_{x}^{\prime} \\
g_{y}^{\prime} \\
g_{z}^{\prime}
\end{array}\right)}_{\left(\begin{array}{l}
g_{x} \\
g_{y} \\
g_{z}
\end{array}\right)=\left(\begin{array}{ccc}
-\cos \theta \cos \phi & \operatorname{sin\phi } & \sin \theta \cos \phi \\
-\cos \theta \sin \phi & -\cos \phi & \sin \theta \sin \phi \\
\sin \theta & 0 & \cos \theta
\end{array}\right)}
$$

Intersection point with radiator side boundaries:
$>$ This is solution of the following equation:

$$
\left(z-z_{0}\right)^{2}\left[\left(\frac{g_{x}}{g_{z}}\right)^{2}+\left(\frac{g_{y}}{g_{z}}\right)^{2}\right]+2\left(z-z_{0}\right)\left[x_{0} \frac{g_{x}}{g_{z}}+y_{0} \frac{g_{y}}{g_{z}}\right]+\left(x_{0}^{2}+y_{0}{ }^{2}-R T M I R^{2}\right)=0
$$

Geometrical Calculations

Photon Refraction at radiator boundary:

According to the transformation the incident angle, θ_{i}, in the radiator's boundary is obtained as:
$\cos \theta_{i}=\sin \theta \sin \theta_{c} \cos \varphi+\cos \theta \cos \theta_{c}$

- $n \sin \theta_{i}>1$ total reflection
- $n \sin \theta_{i}<1$ refraction in point

$$
P^{\prime}\left(x_{0}^{\prime}, y_{0}^{\prime}, z_{0}^{\prime}\right)=P_{0}\left(x_{0}, y_{0}, z_{0}\right)+\frac{\left(z_{0}^{\prime}-z_{0}\right)}{g_{z}} \vec{g}
$$

$z_{0}^{\prime} \equiv$ radiator basis plane

Transmition direction:

$$
\begin{gathered}
\vec{g}_{t}=\frac{\sin \theta_{t}}{\sin \theta_{i}} \vec{g}+\frac{\sin \left(\theta_{t}-\theta_{i}\right)}{\sin \theta_{i}} \vec{n}=n \vec{g}+\frac{\sin \left(\theta_{t}-\theta_{i}\right)}{\sin \theta_{i}} \vec{n} \\
\vec{n} \equiv(0,0,-1)
\end{gathered}
$$

Where: θ_{i} incident angle measured with respect to the normal

Reflection

Mirror Surface:

Intersection point of the photon with the mirror:

The z-coordinate of the intersection point is solution of the equation:

$$
\begin{aligned}
& \left(z-z_{0}^{\prime}\right)^{2}\left[\left(\frac{g_{t x}}{g_{t z}}\right)^{2}+\left(\frac{g_{t y}}{g_{t z}}\right)^{2}-\tan \theta_{c}^{2}\right]+2\left(z-z_{0}^{\prime}\right)\left[\frac{g_{t x}}{g_{t z}}\left(x_{0}^{\prime}-x_{c}\right)+\frac{g_{t y}}{g_{t z}}\left(y_{0}^{\prime}-y_{c}\right)-\tan \theta_{c}^{2}\left(z_{0}^{\prime}-z_{c}\right)\right]+\left(x_{0}^{\prime}-x_{c}\right)^{2}+\left(y_{0}^{\prime}-y_{c}\right)^{2} \\
& -\tan \theta_{c}^{2}\left(z_{0}^{\prime}-z_{c}\right)^{2}=0
\end{aligned}
$$

The x, y coordinates are obtained from:

$$
\begin{aligned}
& x=x_{0}^{\prime}+\left(\frac{g_{t x}}{g_{t z}}\right)\left(z-z_{0}^{\prime}\right) \\
& y=y_{0}^{\prime}+\left(\frac{g_{t y}}{g_{t z}}\right)\left(z-z_{0}^{\prime}\right)
\end{aligned}
$$

Photon reflection on mirror:

The reflected photon's direction can be expressed in terms of:
the normal to the mirror's wall \vec{n}_{m} (gradient of the conical surface, pointing inward)
> new incident direction \vec{g}_{t}

Photon reflection will only happen for those photon's which intersept the PMTs' plane (P_{I}) with a distance to the z-axis greater than RBMIR
This distance can be computed from the coordinates of the intersection point in radiator and taking into account the height of the mirror ($\Delta \mathrm{Z}_{\text {MIR }}$).

$$
P_{I}=P_{0}^{\prime}+\frac{\Delta Z_{M I R}}{g_{t z}} \vec{g}_{t}
$$

Geometrical Calculations

At this stage photon's will either:
$>$ Reach the PMTs matrix
\Rightarrow Fall in the squared hole on the top of the EMC
Intersection point with the limits of the squared hole:

$$
\begin{array}{cl}
\pm x_{\lim }=x_{r}+\frac{g_{r x}}{g_{r z}}\left(z_{\text {plane }}-z_{I 0}\right) & \pm x_{\lim }=x_{0}^{\prime}+\frac{g_{t x}}{g_{t z}}\left(z_{\text {plane }}-z_{0}^{\prime}\right) \\
o r \\
\pm y_{\lim }=y_{r}+\frac{g_{r y}}{g_{r z}}\left(z_{\text {plane }}-z_{I 0}\right) & \pm y_{\lim }=y_{0}^{\prime}+\frac{g_{t y}}{g_{t z}}\left(z_{\text {plane }}-z_{0}^{\prime}\right)
\end{array}
$$

\# Acceptances Calculation

Achieved the intersection point the acceptance calculus of each portion in the different detector elements is imediate, once in the particle's frame the photon distribution is uniform!!!

Direct pattern:

$$
\text { Dir_Acc }=\left(\varphi_{h}{ }^{1}-\frac{\varphi_{m}}{} \frac{1}{\Delta \varphi_{T O T}}+\left(\varphi_{m}{ }^{2}-\varphi_{h}{ }^{2}\right)\right.
$$

Pattern in the Mirror :
Mir_Acc $=\frac{\left(\varphi_{m}^{2}-\varphi_{m}{ }^{1}\right)}{\Delta \varphi_{T O T}}$

Pattern in the Hole:

$$
\text { Hol_Acc }=\quad \frac{\left(\varphi_{h}{ }^{2}-\varphi_{h}{ }^{1}\right)}{\Delta \varphi_{T O T}}
$$

$$
\begin{aligned}
& \text { Geometrical Acceptance: } \\
& \text { Dir_Acc + Mir_reflectivity * Mir_Acc }
\end{aligned}
$$

Events and its acceptances
Events and corresponding acceptances produced in AGL and NaF

Impact point $(28,-33,0)$
$\theta=12^{\circ}$
$\phi=290^{\circ}$
$\beta=0.996$
No of: hits $=6$
used hits $=4$ photoelectrons $=4$

Impact point $(20,40,0)$
$\theta=15^{\circ}$
$\phi=80^{\circ}$
$\beta=0.995$
No of:
hits $=19$
used hits $=15$
photoelectrons $=15$

Impact point $(20,20,0)$
$\theta=15^{\circ}$
$\phi=80^{\circ}$
$\beta=0.995$
No of:
hits $=33$
used hits $=25$
photoelectrons = 32

Litium $10 \mathrm{GeV} /$ nucleon

Simulation

No. of reflected photons
No. of observed photons

Analytical Calculation
$\frac{0.9^{*} \text { Mir_Acc }}{\text { Dir_Acc }+0.9^{*} \text { Mir_Acc }}$

Results

This study is applyed to:

[^0]
[^0]: \checkmark Velocity reconstruction
 \checkmark Charge reconstruction
 \checkmark Evaluation of eventual inefficient regions of the detector \checkmark Study of the radiator light yield mapping

