Current status of RICH Sim/Rec in AMS general code

C. Delgado

- Simulation.
- Reconstruction.
- Ntuple content.

Simulation: geometry

ECAL hole
Light guide height: 31 mm

$$
\text { Number of PMTs:680 } \rightarrow 10880 \text { channels }
$$

Simulation: optical properties

- Radiator: Aerogel
- Mean refractive index: 1.05

The chromatic dispersion is assumed to be the one from fused silica scaled.

- Absorption length: 36 cm
- Clarity: $0.0091 \mathrm{~cm}^{-1} \mu \mathrm{~m}^{4}$

Values obtained fitting the forward transmittance of the Matsushita commercial sheets.

- Light guides and radiator supporting foil:

Each one of the group of 16 light guides is separated by vacuum.

- Mean refractive index: 1.49

According to fit to CIEMAT measurements.

- Absorption length: $>100 \mathrm{~cm}$ for $\lambda>400 \mathrm{~nm}$ Best fit value to CIEMAT measurement.
- Mirror:
- Reflectivity: 85\%
- Photocathode window: Borosilicate

In optical contact with light guide.

- Mean refractive index: 1.458
- Transmittance: convolutionated in quantum efficiency Hamamatsu's tables.

Simulation: Digitalisation

- Pedestal:

All the channels with the same gaussian one:

- Mean value: 0.0 ADC counts.
- $\sigma_{p e d}: 0.53$ ADC counts.
- Threshold:

Set to $3.75 \sigma_{p e d}$ for all the pedestals.
This yields $\approx 9 \times 10^{-5}$ channel $^{-1}$ event $^{-1}$ noisy hits.

- PMT quantum efficiency:

The one from Hamamatsu's information sheets for the R7900-M16 with a borosilicate window.

- Single p.e. PMT response

Gaussian truncated below the pedestal.
The same for all the channels:

- Mean value: 23.04 ADC counts.
- σ : 12.10 ADC counts.
$-\frac{\sigma}{Q}: \approx 0.52$
To increase the simulation speed, the quantum efficiency is applied at photon generation inside the radiator or the light guides.

Reconstruction: algorithm description

Currently the only reconstruction algorithm implemented is the CIEMAT β reconstruction using the reconstruted track information.
Brief description

For each reconstructed track provided by the tracker:

1. For each hit, back trace the photon trajectory using a semi-analytical solution for all the possible paths.

- One without reflection.
- Two with reflection

2. Look for a cluster in the reconstructed β s for each hit such that:

- Each hit only contributes with the closer path to the cluster center, if it is close enough.
- The cluster width is compatible with the expected one.
- The number of hits contributing to the cluster is maximum.

Ntuple: RICH related variables

Block	Variable	Description
EVENTH	RICMCClusters	Number of clusters which can give rise to a digitalised hit.
EVENTH	RICHits	Number of digitalised hits
PARTICLE	prichp(1:npart)	Pointer to the ring associated to the reconstructed particle
PARTICLE	pbeta(1:npart)	Reconstructed particle's β (TOF+RICH)
PARTICLE	coorich(3,2,1:npart)	Particle track extrapolation to RICH radiator and RICH PMT array.
PARTICLE	pathrich(2,1:npart)	Estimated fraction of emitted photons within RICH acceptance for $\beta=1$ for direct anc reflected cases.
PARTICLE	lengthrich(1:npart)	Estimated pathlengh of particle within RICH radiator
RICMCCL	nsignals	Number clusters which can give rise to a digitalised hit.
RICMCCL	sid(1:nsignals)	Geant ID code of the particle originating this cluster. - \square : pedestal noise - 50 : Čerenkov photon

Block	Variable	Description
RING	nrings	Number of reconstructed rings
RING	rcritrkn(1:nrings)	Pointer to the associated track
RING	rcrihu(1:nrings)	Total number of hits in the ring
RING	rcrimhu(1:nrings)	Number of hits in the ring associated to
		a trajectory with reflection
RING	rcribeta(1:nrings)	Reconstructed β
RING	rcriebeta(1:nrings)	Estimated error in β
RING	rcrichi2(1:nrings)	$\chi^{2} / N d o f$ for the ring

