Current status of RICH Sim/Rec in AMS general code

C. Delgado

- Simulation.
- Reconstruction.
- Ntuple content.

Simulation: geometry

Simulation: optical properties

- Radiator: Aerogel
 - Mean refractive index: 1.05
 - The chromatic dispersion is assumed to be the one from fused silica scaled.
 - Absorption length: 36 cm
 - Clarity: $0.0091cm^{-1}\mu m^4$ Values obtained fitting the forward transmittance of the Matsushita commercial sheets.

- Light guides and radiator supporting foil: Each one of the group of 16 light guides is separated by vacuum.
 - Mean refractive index: 1.49
 According to fit to CIEMAT measurements.
 - Absorption length: > 100cm for λ > 400nm Best fit value to CIEMAT measurement.
- Mirror:

Reflectivity: 85%

- Photocathode window: Borosilicate In optical contact with light guide.
 - Mean refractive index: 1.458
 - Transmittance: convolutionated in quantum efficiency Hamamatsu's tables.

Simulation: Digitalisation

• Pedestal:

All the channels with the same gaussian one:

Mean value: 0.0 ADC counts.

 σ_{ped} : 0.53 ADC counts.

• Threshold:

Set to $3.75\sigma_{ped}$ for all the pedestals. This yields $\approx 9 \times 10^{-5} channel^{-1} event^{-1}$ noisy hits.

The one from Hamamatsu's information sheets for the R7900-M16 with a borosilicate window. • Single p.e. PMT response

Gaussian truncated below the pedestal.

The same for all the channels:

- Mean value: 23.04 ADC counts.
- σ : 12.10 ADC counts.

 $- \frac{\sigma}{Q}$: ≈ 0.52

To increase the simulation speed, the quantum efficiency is applied at photon generation inside the radiator or the light guides.

Reconstruction: algorithm description

Currently the only reconstruction algorithm implemented is the CIEMAT β reconstruction using the reconstruted track information.

Brief description

For each reconstructed track provided by the tracker:

- 1. For each hit, back trace the photon trajectory using a semi-analytical solution for all the possible paths.
 - One without reflection.
 - Two with reflection
- 2. Look for a cluster in the reconstructed β s for each hit such that:
 - Each hit only contributes with the closer path to the cluster center, if it is close enough.
 - The cluster width is compatible with the expected one.
 - The number of hits contributing to the cluster is maximum.

Ntuple: RICH related variables

Block	Variable	Description
EVENTH	RICMCClusters	Number of clusters which can give
		rise to a digitalised hit.
EVENTH	RICHits	Number of digitalised hits
PARTICLE	prichp(1:npart)	Pointer to the ring associated to the
		reconstructed particle
PARTICLE	pbeta(1:npart)	Reconstructed particle's
		β (TOF+RICH)
PARTICLE	coorich(3,2,1:npart)	Particle track extrapolation to RICH
		radiator and RICH PMT array.
PARTICLE	pathrich(2,1:npart)	Estimated fraction of emitted photons
		within RICH acceptance for $\beta = 1$ for direct and
		reflected cases.
PARTICLE	lengthrich(1:npart)	Estimated pathlengh of particle within
		RICH radiator
RICMCCL	nsignals	Number clusters which can give
		rise to a digitalised hit.
RICMCCL	sid(1:nsignals)	Geant ID code of the particle originating
		this cluster.
		• -666 : pedestal noise
		• 50 : Čerenkov photon

Block	Variable	Description
RICMCCL	rimcorg(3,1:nsignals)	Birth point of the particle's cluster
RICMCCL	rimcdir(3,1:nsignals)	Birth direction of the particle's cluster
RICMCCL	rimcstatus(1:nsignals)	Cluster status:
		for Čerenkov hits: additive word with
		1 if suffered rayleigh scattering
		$+10 \times$ number of reflections in mirror
		+100 if mother is not primary
		Special values
		-1 PMT noise
		-2 generated in photcathode window
		-3 not Čerenkov photon
		-5 generated in light guide
RICMCCL	rimcnphg	Number of Čerenkov photons generated
		in radiator.
RICMCCL	rimcphit(1:nsignals)	Pointer to one hit if any
RICEVENT	Rhits	Number of digitalised hits
RICEVENT	Rchtch(1:Rhits)	Channel Id
RICEVENT	Rchtadc(1:Rhits)	ADC counts
RICEVENT	Rchtx(1:Rhits)	X coordinate on top of LG
RICEVENT	Rchty(1:Rhits)	Y coordinate on top of LG

Block	Variable	Description
RING	nrings	Number of reconstructed rings
RING	rcritrkn(1:nrings)	Pointer to the associated track
RING	rcrihu(1:nrings)	Total number of hits in the ring
RING	rcrimhu(1:nrings)	Number of hits in the ring associated to
		a trajectory with reflection
RING	rcribeta(1:nrings)	Reconstructed β
RING	rcriebeta(1:nrings)	Estimated error in β
RING	rcrichi2(1:nrings)	$\chi^2/Ndof$ for the ring