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Setup description

• Wire chambers and scin-

tillators planes on top of

radiator.

• PMT array geometry:
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Runs descriptions

The trigger rate is ∼ 0.5 Hz

For the MC the simulated spectrum is muons at sea level.

• Radiator: 3 cm of aerogel n=1.03

– Data: run21: ∼200000 evts

– MC: 100 Kevts

Clarity: 0.0041 cm−1µm4

• Radiator: 2cm of aerogel n=1.05

– Data: run 26: ∼150000 evts

– MC: 100 Kevts

Clarity: 0.0091 cm−1µm4

n simulated: 1.0488

• Radiator: 0.5 cm of NaF n=1.33

(10× 10cm2 tile)

– Data: run29: ∼700000 evts

– MC: 200 Kevts

• All the aerogels with polyester
supporting foil.

• NaF without supporting foil.

• All the runs aligned.

• Common PMT calibration for
all the runs with noisy channel
suppression for each run.



PMTs calibration
Pedestal   144.8

σp   5.345

µ  0.1261

T  0.3937

λ   1.657

S   24.93

λ2  0.3903E−01
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• Gain: ≈ S(1 + λ)

• Single P.E. resolution: ≈ S
√
λ

• Mean number of p.e.: µ

Fit to the convolution of several distributions:

1. Pedestal: Gaussian.

2. Single p.e.: Described by the approximate distribution
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The calibration resulted in

• Mean pedestal width: ∼ 4 ADC counts.

• Mean gain (×5): ∼ 67 ADC counts.

• ∼ 1% of negative pedestals

• ∼ 9% of double peaked pedestals
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• Pedestals stability: in 19 hours is in the range ±1ADC

counts.

• PMTs dark current: yields ∼ 4× 10−5 hits per event

per channel.

• Pedestal tails (> 4σ): yields ∼ 8× 10−5 hits per event

per channel.
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Wire Chamber alignment

Procedure:

• Wire chamber signals are fitted to a line.

• The residues for each plane are computed.

• The local position or all planes is shifted according to

the peak of the residues associated to it.
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Wire Chambers/RICH alignment

• It relies in the RICH capacity to determine the light

guide crossed by the particle.

– From MC: σRICHx ' σRICHy ≈ 0.4cm.

– It present a small bias if the tracks are not

homogeneously distributed in φ.
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Procedure

• Compute the extrapolation of the track to the
PMT matrix.

• Within a given region around this point (∼
1/2 PMT size), choose the hit with largest
number of p.e.

• If this number is large enough (≥ 3p.e.), com-
pute:

1. Distance in X to the track point.

2. Distance in Y to the track point.

3. Difference in tan−1 Y
X for the track point

and the chosen one.
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• All the aligned differ-

ences are compatible

with zero.

• The RICH ⊕WC resolu-

tion is ∼ 0.6cm.



Alignment stability
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• From one run to other the alignment parameters

change in the range ±1mm.



Track selection
• To ensure a well reconstructed track we proceed as in the alignment study, but

we are more careful in choosing the signal threshold for the hit matching the

track: signal>6 p.e.

• Only tracks with a hit with a signal above the threshold matching the track are
selected.

– Strong matching criteria: Distance from track extrapolated point to

selected hit < 1σRICH⊕WC .

• Finally a loose χ2 cut in the track is applied.
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Event selection

Further refinements are achieved by event selection:

All events

Flaged events

number of hits out of hitted PMT
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• Events with possibility of confusion of the hit due to

the crossing of the particle are flagged.



Number of hits

• Very good agreement between data
and MC for aerogel.

• For NaF there is an extra 30%
amount of hits respect MC.
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β reconstruction algorithm

Two closely related algorithms implemented in the

prototype reconstruction:

• Reconstruction with track parameters.

– Implemented in AMS software too.

– Very tested.

– Robust and fast as far as the tracks parameters are well known.

. ≈140 times faster than Tracker reconstruction for protons.

• Reconstruction without track parameters.

– Not implemented int the AMS software.

– Not very tested (but working).

– ≈ 146 times slower than the reconstruction with known track parameters



Reconstruction with track parameters

1. Back trace: Find all the photons trajectories compatible with each hit and
assign a β to each trajectory.

• Semi analytical solving of propagation equation.

• Assume a common emission point for all the photons: mean emission
point of the detected photons.

2. Fast search of most the probable common β for all the reconstructed
trajectories with noise reduction and ambiguity solving:

• Look for the cluster of β values such that:

– For each hit, only the trajectory with the associated β closer to the
cluster center is considered.

– Only the β closer than 3× σ(β hit) to the cluster center are considered.

• Only the cluster with the bigger number of β values is retained.

• The reconstructed particle β is the mean value of the cluster.
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Reconstruction without track parameters

1. For a set of points over the radiator estimates the

particle direction assuming that it passes by this point.

• Currently it assumes that the particle passes

through the light guide associated with the channel

with bigger number of p.e.

2. If the estimated track is within the geometrical

acceptance: reconstruct β.

3. Select the track with the best reconstructed β.

The uncertainty of the PMT behaviour when it is crossed

by a charged particle is a source of uncertainty in the

resolution for the current implementation of the algorithm.



Track known: all βhit spectrum

For aerogel there are two main differences
between data and MC:

• The background in data is larger
than in MC.

• The Čerekov peak width is larger in
data than in MC.

This disagreement is larger for n=1.05.
Apparently this does not happen for NaF.
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Track known: reconstruction efficiency

• Good agreement with MC for 1.03:

– 1.03: Small disagreement
due to ∼ 1 hit of difference.

• Large disagreement for 1.05, to be
investigated further.

• Disagreement in NaF compatible
with excess of hits in the ring, could
be due to geometry (still to be
checked).
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Track known: hits in ring

• There is an important defect of
hits associated to a ring for aerogel
in data respect MC. The disagree-
ment for n=1.05 is quite worse than
for n=1.03.

• For NaF this difference is a small
excess of hits in the ring of data
respect MC .
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Track known: resolution per hit

• Estimated as

lim
nused→∞

√
nused

nused − 1
σ(βevent − βhit)

• ≈ 25% of disagreement for n=1.03

• Roughly 40% for n=1.05, but not
conclusive due to the lack of hits.

• Very good agreement for NaF
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Track unknown: correlation with ’track known’ rec.
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• New reconstruction only working for aerogel runs.

• Reconstructions difference are within ≈ 2σ of the

reconstruction using the wire chambers for data and

MC.



Track unknown: reconstruction efficiency

reconstructed β1
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• The reconstruction without wire chambers has a strong

dependence in the fraction of ring detected. This

explain the decrease for large β in the efficiency.

• The reconstruction efficiency for n=1.05 is smaller

than the expected. This is due to the small mean

number of hits per ring on data respect the MC.



Track unknown: resolution per hit (%)
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• For n=1.03, the disagreement between data and MC is similar to the

one of the reconstruction using the wire chambers.

• For n=1.05, apparently the disagreement is similar too. However the

small number of hits per rings makes it difficult to give a precise

number.



Summary of differences

We can summarize the previous results as:

• For aerogel the background is larger than the

expected.

This difference is such that:

– The total number of hits agrees in data and MC.

– The number of hits in the ring is smaller in data.

thus pointing to a migration from the population of

hits in the ring to the background.

Apparently this does not happen for NaF.

• The resolution per hit for aerogel is worse than

expected.



Background excess
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• The background and (partly) the difference in the resolution can be
parametrized as a scattering process over imposed to the Rayleigh with:

n=1.03

– Mean free path: 2 cm

– dσ
dΩ ∝

Gσ=0.5(θ)
sinθ

n=1.05

– Mean free path: 1 cm

– dσ
dΩ ∝

Gσ=0.5(θ)
sinθ



The necessary scattering lengths ratio is compatible with the values

obtained from the clarity:

Lscattering(λ) = λ4Clarity−1

• n=1.03 (Cl=0.0042) : Lscattering(400nm) ≈ 6cm

• n=1.05 (Cl=0.0091) : Lscattering(400nm) ≈ 3cm

However the cross section is different:

dσrayleigh

dΩ
∝ 1 + cos2θ

The deterioration of the resolution is, at least partly, due to this effect.

Need to be measured!!!



Conclusions

• NaF resolution agrees with MC.

So light guide angular inefficiency is well

reproduced in MC. not clear.

• NaF photon yield is larger than expected.

This to be understood.

• Agreement for n=1.03 is better than for n=1.05

(but note the acceptance and radiator thickness

differences). However the source of both

disagreements seems to be similar:

– Aparently it is not the wire chambers, as we

see it using the independent algorithm.

– It is not the light guides or PMT, as we do

not see it for NaF.

– The stacking cannot be responsible for all

the effect as for n=1.05 the stacking is

smaller but the disagreement is larger.

– The disagreement could be due to a very

forward scattering process.

– We have not idea of the contribution due to

the polyester foil!!



Petitions

• Set of measurements of the aerogels forward

scattering angular distribution to determine

if the new scattering process is really there.

• Set of runs without the polyester.

• Run of n=1.03 (at least) without stacking.

• Run with n=1.05 with 3cm of thickness and/or

smaller drift distance.

• Measurement of light guides properties.


	texpower full demo and documentation
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28


