Reconstruction of β : analysis of $n=1.03, n=1.05$ and $\mathrm{n}=1.33$ radiators

C. Delgado

- Setup and runs description.
- PMTs calibration and alignment procedures.
- Event selection.
- Number of hits.
- β reconstruction algorithms.
- Reconstruction results.
- Towards data/MC agreement for aerogel.
- Conclusions/Petitions.

Setup description

- Wire chambers and scintillators planes on top of radiator.
- PMT array geometry:

341 mm

Runs descriptions

The trigger rate is $\sim 0.5 \mathrm{~Hz}$
For the MC the simulated spectrum is muons at sea level.

- Radiator: 3 cm of aerogel $\mathrm{n}=1.03$
- Data: run21: ~200000 evts
- MC: 100 Kevts

Clarity: $0.0041 \mathrm{~cm}^{-1} \mu \mathrm{~m}^{4}$

- Radiator: 2 cm of aerogel $\mathrm{n}=1.05$
- Data: run 26: ~150000 evts
- MC: 100 Kevts

Clarity: $0.0091 \mathrm{~cm}^{-1} \mu \mathrm{~m}^{4}$
n simulated: 1.0488

- Radiator: 0.5 cm of $\mathrm{NaF} \mathrm{n}=1.33$
(10×10 cm^{2} tile)
- Data: run29: ~700000 evts
- MC: 200 Kevts
- All the aerogels with polyester supporting foil.
- NaF without supporting foil.
- All the runs aligned.
- Common PMT calibration for all the runs with noisy channel suppression for each run.

PMTs calibration

- Gain: $\approx S(1+\lambda)$
- Single P.E. resolution: $\approx S \sqrt{\lambda}$
- Mean number of p.e.: μ

Fit to the convolution of several distributions:

1. Pedestal: Gaussian.
2. Single p.e.: Described by the approximate distribution

$$
P(x) \simeq e^{-\lambda} \delta(x)+\left(1-e^{-\lambda}\right) \frac{e^{-\lambda}}{S \lambda} \frac{\lambda^{\frac{x}{S}}}{\Gamma\left(\frac{x}{S}\right)} \theta(x)
$$

The calibration resulted in

- Mean pedestal width: ~ 4 ADC counts.
- Mean gain $(\times 5): \sim 67$ ADC counts.
- $\sim 1 \%$ of negative pedestals
- $\sim 9 \%$ of double peaked pedestals

- Pedestals stability: in 19 hours is in the range $\pm 1 \mathrm{ADC}$ counts.
- PMTs dark current: yields $\sim 4 \times 10^{-5}$ hits per event per channel.
- Pedestal tails $(>4 \sigma)$: yields $\sim 8 \times 10^{-5}$ hits per event per channel.

Wire Chamber alignment

Procedure:

- Wire chamber signals are fitted to a line.
- The residues for each plane are computed.
- The local position or all planes is shifted according to the peak of the residues associated to it.

Wire Chambers/RICH alignment

- It relies in the RICH capacity to determine the light guide crossed by the particle.
- From MC: $\sigma_{x}^{R I C H} \simeq \sigma_{y}^{R I C H} \approx 0.4 \mathrm{~cm}$.
- It present a small bias if the tracks are not homogeneously distributed in ϕ.

Procedure

- Compute the extrapolation of the track to the PMT matrix.
- Within a given region around this point (\sim $1 / 2$ PMT size), choose the hit with largest number of p.e.
- If this number is large enough (≥ 3 p.e.), compute:

1. Distance in X to the track point.
2. Distance in Y to the track point.
3. Difference in $\tan ^{-1} \frac{Y}{X}$ for the track point and the chosen one.

- All the aligned differences are compatible with zero.
- The $R I C H \oplus W C$ resolution is $\sim 0.6 \mathrm{~cm}$.

Alignment stability

- From one run to other the alignment parameters change in the range $\pm 1 \mathrm{~mm}$.

Track selection

- To ensure a well reconstructed track we proceed as in the alignment study, but we are more careful in choosing the signal threshold for the hit matching the track: signal>6 p.e.
- Only tracks with a hit with a signal above the threshold matching the track are selected.
- Strong matching criteria: Distance from track extrapolated point to selected hit $<1 \sigma_{R I C H \oplus W C}$.
- Finally a loose χ^{2} cut in the track is applied.

Event selection

Further refinements are achieved by event selection:

- Events with possibility of confusion of the hit due to the crossing of the particle are flagged.

Number of hits

- Very good agreement between data and MC for aerogel.
- For NaF there is an extra 30\% amount of hits respect MC.

β reconstruction algorithm

Two closely related algorithms implemented in the prototype reconstruction:

- Reconstruction with track parameters.
- Implemented in AMS software too.
- Very tested.
- Robust and fast as far as the tracks parameters are well known.
$\triangleright \approx 140$ times faster than Tracker reconstruction for protons.
- Reconstruction without track parameters.
- Not implemented int the AMS software.
- Not very tested (but working).
- ≈ 146 times slower than the reconstruction with known track parameters

Reconstruction with track parameters

1. Back trace: Find all the photons trajectories compatible with each hit and assign a β to each trajectory.

- Semi analytical solving of propagation equation.
- Assume a common emission point for all the photons: mean emission point of the detected photons.

2. Fast search of most the probable common β for all the reconstructed trajectories with noise reduction and ambiguity solving:

- Look for the cluster of β values such that:
- For each hit, only the trajectory with the associated β closer to the cluster center is considered.
- Only the β closer than $3 \times \sigma(\beta$ hit $)$ to the cluster center are considered.
- Only the cluster with the bigger number of β values is retained.
- The reconstructed particle β is the mean value of the cluster.


```
Reconstruction without track parameters
```

1. For a set of points over the radiator estimates the particle direction assuming that it passes by this point.

- Currently it assumes that the particle passes through the light guide associated with the channel with bigger number of p.e.

2. If the estimated track is within the geometrical acceptance: reconstruct β.
3. Select the track with the best reconstructed β.

The uncertainty of the PMT behaviour when it is crossed by a charged particle is a source of uncertainty in the resolution for the current implementation of the algorithm.

Track known: all $\beta_{h i t}$ spectrum

For aerogel there are two main differences between data and MC:

- The background in data is larger than in MC.
- The Čerekov peak width is larger in data than in MC.

This disagreement is larger for $\mathrm{n}=1.05$. Apparently this does not happen for NaF .

Track known: reconstruction efficiency

- Good agreement with MC for 1.03: - 1.03 : \quad Small disagreement
- Large disagreement for 1.05, to be investigated further.
- Disagreement in NaF compatible with excess of hits in the ring, could be due to geometry (still to be checked).

ext. track distance to center
ext. track distance to center

Track known: hits in ring

- There is an important defect of hits associated to a ring for aerogel in data respect MC. The disagreement for $\mathrm{n}=1.05$ is quite worse than for $n=1.03$.
- For NaF this difference is a small excess of hits in the ring of data respect MC.

Track known: resolution per hit

- Estimated as

$$
\lim _{n_{\text {used }} \rightarrow \infty} \sqrt{\frac{n_{\text {used }}}{n_{\text {used }}-1}} \sigma\left(\beta_{\text {event }}-\beta_{\text {hit }}\right)
$$

- $\approx 25 \%$ of disagreement for $n=1.03$
- Roughly 40% for $n=1.05$, but not conclusive due to the lack of hits.
- Very good agreement for NaF

Track unknown: correlation with 'track known' rec.

- New reconstruction only working for aerogel runs.
- Reconstructions difference are within $\approx 2 \sigma$ of the reconstruction using the wire chambers for data and MC.

Track unknown: reconstruction efficiency

- The reconstruction without wire chambers has a strong dependence in the fraction of ring detected. This explain the decrease for large β in the efficiency.
- The reconstruction efficiency for $\mathrm{n}=1.05$ is smaller than the expected. This is due to the small mean number of hits per ring on data respect the MC.

```
Track unknown: resolution per hit (%)
```


- For $\mathrm{n}=1.03$, the disagreement between data and $M C$ is similar to the one of the reconstruction using the wire chambers.
- For $n=1.05$, apparently the disagreement is similar too. However the small number of hits per rings makes it difficult to give a precise number.

Summary of differences

We can summarize the previous results as:

- For aerogel the background is larger than the expected.
This difference is such that:
- The total number of hits agrees in data and MC.
- The number of hits in the ring is smaller in data.
thus pointing to a migration from the population of hits in the ring to the background.
Apparently this does not happen for NaF.
- The resolution per hit for aerogel is worse than expected.

Background excess

- The background and (partly) the difference in the resolution can be parametrized as a scattering process over imposed to the Rayleigh with:

$$
\mathrm{n}=1.03
$$

$$
\mathrm{n}=1.05
$$

$$
\begin{aligned}
& \text { - Mean free path: } 2 \mathrm{~cm} \\
& \text { - } \frac{d \sigma}{d \Omega} \propto \frac{G_{\sigma=0.5}(\theta)}{\sin \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Mean free path: } 1 \mathrm{~cm} \\
& -\frac{d \sigma}{d \Omega} \propto \frac{G_{\sigma=0.5}(\theta)}{\sin \theta}
\end{aligned}
$$

The necessary scattering lengths ratio is compatible with the values obtained from the clarity:

$$
L_{\text {scattering }}(\lambda)=\lambda^{4} \text { Clarity }^{-1}
$$

- $\mathrm{n}=1.03(\mathrm{Cl}=0.0042): L_{\text {scattering }}(400 \mathrm{~nm}) \approx 6 \mathrm{~cm}$
- $\mathrm{n}=1.05(\mathrm{Cl}=0.0091): L_{\text {scattering }}(400 \mathrm{~nm}) \approx 3 \mathrm{~cm}$

However the cross section is different:

$$
\frac{d \sigma_{\text {rayleigh }}}{d \Omega} \propto 1+\cos ^{2} \theta
$$

The deterioration of the resolution is, at least partly, due to this effect.

- NaF resolution agrees with MC. So light guide angular inefficiency is well reproduced in MC. not clear.
- NaF photon yield is larger than expected. This to be understood.
- Agreement for $\mathrm{n}=1.03$ is better than for $\mathrm{n}=1.05$ (but note the acceptance and radiator thickness differences). However the source of both disagreements seems to be similar:
- Aparently it is not the wire chambers, as we see it using the independent algorithm.
- It is not the light guides or PMT, as we do not see it for NaF.
- The stacking cannot be responsible for all the effect as for $\mathrm{n}=1.05$ the stacking is smaller but the disagreement is larger.
- The disagreement could be due to a very forward scattering process.
- We have not idea of the contribution due to the polyester foil!!

Petitions

- Set of measurements of the aerogels forward scattering angular distribution to determine if the new scattering process is really there.
- Set of runs without the polyester.
- Run of $\mathrm{n}=1.03$ (at least) without stacking.
- Run with $\mathrm{n}=1.05$ with 3 cm of thickness and/or smaller drift distance.
- Measurement of light guides properties.

