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Resumo
O campo magnético do Sol, transportado pelo vento Solar, é a fonte da maior magne-

tosfera do Sistema Solar, a Heliosfera, e da consequente modulacão dos raios cósmicos
galácticos. A modulação Solar é dominante a baixas energias (abaixo de 10 GeV),
afectando não só a intensidade dos raios cósmicos galácticos como também a forma do
seu espectro. Para cada espécie de raios cósmicos, o fluxo observado na Terra é defor-
mado em relação ao fluxo interestelar, dependendo da actividade do Sol. A propagação
dos raios cósmicos na Heliosfera é descrita pela Equação de Parker, formulada nos anos
sessenta. A equação incorpora uma série de fenómenos físicos que acontecem no interior
da Heliosfera, tais como processos difusivos, convecção, perdas de energia adiabáticas e
drifts. Dado que não existe uma solução analítica completa para a Equação de Parker,
foram tentadas várias abordagens para a resolver, desde aproximações analiticas até
soluções numéricas. Na primeira parte deste trabalho, são estudadas as diferentes for-
mas de resolver a equação de transporte e são delineados métodos para a resolução
numérica a 1D e 2D. A segunda parte é a caracterização da modulação, usando os
fluxos de protões medidos em AMS-02. O detector AMS foi instalado na ISS no ano
passado e espera-se que consiga detectar fluxos de raios cósmicos até 1 TeV, de forma
contínua durante 10 a 18 anos. A taxa de eventos que chega ao detector - 40 106 de
eventos por dia - nunca tinha sido alcançada antes, representando assim uma oportu-
nidade única de estudar, numa base diária, a modulação Solar. Finalmente, para alguns
dos resultados, é feita uma comparação entre AMS-02 e os monitores de neutrões.

Palavras-Chave: Modulação Solar, AMS-02, Aproximação Force FIeld,
Solução 1D, Solução 2D, fluxos de protões.





Abstract
The magnetic field of the Sun, embedded in the Solar Wind, is the source of the

biggest of the Solar System magnetospheres, the heliosphere, and of the observed modu-
lation of the galactic cosmic rays. Solar modulation is dominant on low energy particles
(below 10 GeV), and affects not only the galactic cosmic ray intensities, but even their
spectral shape. For each cosmic ray species, the particle fluxes measured at Earth are
deformed with respect to the local interstellar ones, depending on the Solar activity.
The propagation of cosmic rays in the heliosphere is described by the so called Parker
Equation, formulated in the sixties. The equation takes into account several phenom-
ena happening inside the Heliosphere, such as diffusion, convection, adiabatic energy
changes and drifts. Since there is no full analytical solution to the Parker Equation,
several different approaches have been tried, from numerical solutions to analytical ap-
proximations. In the first part of this work, the different ways of solving the transport
equation are studied and numerical methods (1D and 2D) are outlined. The second
part is the characterization of the modulation, using the AMS-02 proton fluxes. The
AMS detector was installed last year in the ISS and is expected to gather data from
cosmic ray fluxes up to 1 TeV, continously between 10 to 18 years. The rates of events
reaching the detector - 40 106 events per day - have never been achieved before, and
represent an unique opportunity to systematically study the Solar modulation in a daily
basis. Finally, for certain results, a comparison is done between the AMS-02 and the
Neutron Monitors.

Keywords: Solar Modulation, AMS-02, Force Field approximation, 1D solu-
tion, 2D solution, proton fluxes.
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1
Introduction

Robert Milikan was the first human being to use the term "cosmic rays" in 1925, to
describe the flux of particles coming from "the outer cosmos", capable of ionizing the
air in Earth’s atmosphere.

However, even the birth of the name "cosmic ray" is not a matter of chance, since
it is preceded by almost 30 years of questions, research and peculiar experiments.

The story began after the discovery of radioactivity by Henri Bacquerel in 1896,
when it was believed that the ionization of the air was due to radiation from radioactive
elements in the ground.

The method to test the veracity of the last statement is simple: to measure the
ionization of the air at various heights.

The ionization was measured in towers, including the Eiffel Tower, in attempts to
figure out what was the penetration power of the radiation coming from the ground.
Nevertheless, it was only in 1912, exactly 100 years ago, that Victor Hess flew in a
balloon to altitudes of 5 km and discovered that , instead of decreasing, the ionization
of the air, strongly increases with altitude. Hess wrote in his book,

"a radiation of very high penetrating power enters the atmosphere from
above"

This marked the discovery of Cosmic Rays (CRs) for which Hess received the Nobel
prize in 1936.

During the following twenty to thirty years, cosmic ray research concentrated on
the high energy properties of the cosmic radiation. CRs were the predecessors of the
accelerators as the source of high energy particles. Physicists began to study the curved
tracks, produced by cosmic rays in cloud chambers, and new discoveries were made.

In August 1932, Anderson observed particles, identical to electrons, that were curv-
ing in the opposite direction in the cloud chamber. These particles were positrons, and
represented the first experimental signature of antimatter.

During the golden age of particle accelerators, in the mid twentieth century, there
was a mass exodus of CRs’s scientists to the accelerator labs.

At the same time there was a significant advance of the field in different directions,
mainly in the area now called "Space Physics". The subject was devoted to the study of
the Solar System, the magnetic fields in the Heliosphere or the constitution and prop-
erties of the Solar Wind. The modulation of CRs when crossing the zone of influence
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1 Introduction

of the Sun - the Heliosphere - became a major field of research.
All these research topics were helped by the space programs of the 60’s and the 70’s.

Satellites were being sent to space at an increasingly high rate, and for the first time in
history it was possible to measure CRs’s intensities in space and compare them with
the intensities measured at Earth, for different Solar cycle epochs and different levels
of Solar activity.

With experiments mounted on balloons and satellites it was possible to measure the
chemical and isotopic compositions of CRs with higher precision, since the particles
were detected before entering the atmosphere.

Figure 1.1: Lunar Module Pilot Edwin ’Buzz’ Aldrin unfurls the Swiss Solar Wind Composi-
tion Experiment - the only European experiment taken to the Moon by Apollo -, and the first
"flag" on the moon.

In the last years, scientists became interested in studying the nature of the highest
energy CRs. While in particle accelerators, like the LHC, laboratory energies of 108

GeV are being achieved, the big CRs detectors at the ground are measuring particles
with energy exceeding 1011 GeV. How does Nature accelerate particles to such high
energies is one of the big questions, still to be answered.

Cosmic Ray physics is a multidisciplinary field where almost every discovery is made
on the edge of different subjects, from Particle Physics to Astronomy, or Astrophysics.

The main purpose of this thesis is to study the effects of the Sun on the flux of
galactic cosmic rays. The Solar modulation effects are dominant at low energies (below

2



1 Introduction

∼ 10 GeV ), and are responsible for the little "bump" on the low energy portion of
the cosmic ray spectrum. In order to quantify the effects of the Sun on the galactic
fluxes, Parker developed a transport equation in 1964. This equation takes into account
several physical phenomena occurring inside the Heliosphere and can only be solved
numerically. In the first part of this thesis some approaches of solving the equation will
be derived. The second part is devoted to the characterization of the modulation using
the data from the AMS-02 spectrometer.
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2
Cosmic Ray Physics

2.1 The Spectrum of Cosmic Rays
The Cosmic Ray Spectrum, i.e. the mean number of Cosmic particles, per surface

unit, per time unit, per solid angle unit and per energy unit that reach Earth has a
couple of unique features. One of the first things that can be noticed in 2.1(a) is that
the spectrum has a large extension, not only in energy, covering 12 orders of magnitude,
but also in the particle fluxes, sweeping through 10 orders of magnitude.

This enormous variety has a few consequences. The first one is that the detectors
used to study the spectrum at 1 GeV are satellites, like the AMS-02, while the detectors
used to study particles at 1012 GeV are huge surface detectors, as big as 1.2 times the
size of Luxembourg, like the Pierre Auger Observatory. The second one is the fact that
it gives us the opportunity to explore completely different aspects of astrophysics and
particle physics.

The spectrum can be described by a power-law in almost all energies

J(E) =
dN

dE
∝ E−γ (2.1)

However, the spectral index changes with energy, taking the following approximate
values:

• 2.7 below 4 ×1015 eV

• 3.0 between 4×1015 eV and 5×1018 eV

• 2.8 for energies higher than 5×1018 eV

The only energy region where the spectrum is not described by a power-law is the
low energy region, around 1 GeV, due to Solar Modulation. The way the Sun models
the flux is the main topic of this thesis and will be extensively discussed in the next
sections. In 2.1(b) the effect of the Sun and its activity on the proton fluxes are clearly
visible.

5



2 Cosmic Ray Physics 2.1 The Spectrum of Cosmic Rays

(a)

(b)

Figure 2.1: a) Differential all-particle spectrum of cosmic rays. [1]. b) Effects of solar
modulation on the proton fluxes (BESS) [2]
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2 Cosmic Ray Physics 2.2 Chemical Composition and Classification

2.2 Chemical Composition and Classification
For energies below 100 TeV the cosmic ray composition is the following

Table 2.1: Cosmic rays’ composition
Type of particle Relative abundance

Protons 86%
Helium 11%
Electrons 2%

Heavier nuclei 1%
Positrons 1%

Antiprotons 1%

It is a curious exercise to take the relative abundance of CRs, depending on the
chemical element, and compare it with the abundance of those elements in the Solar
System. As can be seen in 2.2, the two curves have a very similar behavior, having
peaks in C,N,O and Fe, and in both cases Z-even nuclei are more abundant than Z-odd
(because nuclei with Z-even have a larger binding energy). The only difference is on the
abundance of elements like Li, Be and B, which are far more abundant in CRs. This
is due to the fact that these elements are a product of nuclear interactions between
CRs and the Interstellar Medium (ISM), which occur during the propagation through
the Galaxy. If the spallation cross sections are known, a measure of secondary/primary
abundances can give an indication about the amount of transversed matter. Thus,
secondary to primary ratios are sensitive to the propagation in the Galaxy and their
measure is widely used in models, so that the propagation parameters can be con-
strained, reducing the theoretical uncertainties.

Figure 2.2: Chemical composition of cosmic radiation as measured at 1AU from the Sun com-
pared to the abundances in the Solar System for elements with Z=1-30.Relative abundances
are normalized to the Carbon abundance [3].
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2 Cosmic Ray Physics 2.3 Sources

CRs are classified as primary, those that are accelerated at the source, and sec-
ondary, those that are produced in interactions between primaries and the interstellar
gas. Unfortunately, the designations primary and secondary are also used with a differ-
ent meaning in the context of atmospheric interactions of CRs, where a primary is a
particle that comes from the outer space, and a secondary is a particle that was formed
due to the interactions of the primary with the atmosphere.

Normally, it is possible to separate CRs in three groups:

1. Galactic Cosmic Rays (GCR), originated from outside the solar system are
mainly constituted by protons (7% to 10%), Helium (1%) and heavier elements. The
source of the very high energy GCR is not clearly known. The flux of GCR measured
at Earth is highly influenced by Sun’s activity.

2. Solar Cosmic Rays (SCR) or Solar Energetic Particles (SEP) can be
created by a Solar flare, a Coronal Mass Ejections (CME) or shocks in the interplanetary
medium. SCR energies range from several hundred MeV/nucleon to some GeV/nucleon,
and the composition is very similar to GCR’s. During a few hours/days after a Solar
flare, the intensity of cosmic rays that reach Earth can increase because of the SCR -
this is usually called a SEP.

3. Anomalous Cosmic Rays (ACR) arise from interstellar atoms, which are
caught by the motion of the Sun in the ISM, and stay inside the heliosphere, where
the magnetic field of the Sun dominates. After that, the atoms are ionized at 1-3 AU,
either by photoionization by solar UV photons or by collisions with Solar Wind protons.
The recently created charged particles, now sensible to the Heliospheric Magnetic Field
(HMF), are carried towards the termination shock (during this trip the ions are called
pickup ions), where they are accelerated (First-order Fermi acceleration) from Solar
Wind energies, of about 1 KeV/nucleon, to tens of MeV/nucleon. The acceleration
continues until they have enough energy to escape the shock (some of them diffuse into
the inner heliosphere).

2.3 Sources
As mentioned in the last section, the Sun is a source of low-energy CRs, and so it

is quite reasonable to think that all the other Sun-like stars in the universe are also a
possible source of CRs. However, after calculating the production rate of CRs by Sun-
like stars, the obtained numbers are too low to explain the observed GCR intensities.
As a consequence, several theories have been proposed to explain the observed fluxes.

One of the proposed sources were SuperNovae (SNe). The principal requirement
that a given kind of object must obey in order to be considered a source of CRs is
that the total power emitted must be enough to supply the actual cosmic ray density
(ρ ' 1.6 eV/cm3).

Calculating the volume of the galactic disk as

VD = πR2d ' 4× 1066cm3 (2.2)

where R = 15× 103 pc is the galactic radius and d = 200 pc is the galactic height.
Now, using the confinement time of a cosmic ray in the galactic disk calculated
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within the Leaky Box Model (LBM) - τ ' 6 × 106 years -, it is easy to estimate the
required power of the source

P =
ρVD
τ
' 8× 1040erg/s (2.3)

Knowing the average energy realesed by a Super Nova (SN) explosion - E ' 1.6×
1051 erg - and the rate of these kind of events in the galaxy - 3 per century - the total
power emited by SN explosions is

PSN ' 3× 1042erg/s (2.4)

which makes a SN a strong candidate to be a source of GCR [4].
Another point in favor of this hypothesis came in 1970 when it was understood that

the type of shock occurring in a SN explosion was adequate to explain the acceleration
method required to reproduce a power-law spectra.

Recently, a new hypothesis suggested by Zatsepin and Sokolskaya [5] says that in
order to fit the experimental data on proton, helium and other nuclei, there must be
three types of sources, each one with a characteristic spectral index and maximum
acceleration energy.

The three sources are:

• Stars with mass ranging from 8 to 15 M� , that exploded into the ISM;

• Stars with mass greater than 15 M� within their own stellar wind;

• Nova stars that in the explosion produce an expanding shell like a SN;

The first two types of sources are enough to account for the proton and helium
spectra above 300 GeV, while the third one is required to reproduce fluxes below 300
GeV.

2.4 Acceleration
In what concerns acceleration of CRs, there is a fairly good knowledge of the mecha-

nisms responsible for the acceleration of particles below 1 TeV, during the propagation.
The two processes are named first-order and second-order acceleration.

2.4.1 Second-order Fermi acceleration

This mechanism was proposed by Enrico Fermi in 1949 [6]. In his original paper,
Fermi suggests that the source of acceleration of particles are slowly moving magnetic
clouds, with density 10 to 100 times higher than the average ISM density and an
enhanced "frozen in" magnetic field. If these magnetic clouds were stationary, the par-
ticles would just invert its motion, without any energy changes, just like a magnetic
trap. However, if the clouds were moving, the particles would lose or gain energy de-
pending on the direction of the cloud.
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2 Cosmic Ray Physics 2.4 Acceleration

For a better understanding of the underlying phenomena, let us consider a rela-
tivistic particle, with energy E1, entering a slowly moving magnetic cloud (head-on
collision).

In the cloud’s reference frame, the energy is calculated using a Lorentz transforma-
tion

(
E ′1/c
~p′

)
= Λ

(
E1/c
~p

)
(2.5)

E ′1 = γE1(1− β cos θ1) (2.6)

where θ1 is is the angle between the moving directions of the particle and the cloud,
β = V

c
and γ = 1√

1−β2
are related to the cloud. Defining E ′2 and θ′2 as the energy and

angle of the exiting particle in the cloud’s frame, it is now possible to apply another
Lorentz transformation in order to obtain

E2 = γE ′2(1 + β cos θ′2) (2.7)

Assuming the hypothesis of elastic scattering - E ′2 = E ′1 (the total energy of the
particle is conserved in the frame of the cloud)

E2 = γ2E1(1− β cos θ1)(1 + β cos θ′2) (2.8)
E2 − E1

E1

' ∆E

E
=

1 + β(cos θ′2 − cos θ1)− β2 cos θ′2 cos θ1

1− β2
− 1 (2.9)

Now averaging the equation with respect to the two angles θ1 and θ′2

〈
∆E

E

〉
:=

∫ 1

−1

∫ 1

−1

∆E

E
fθ1fθ′2d cos θ1d cos θ′2 (2.10)

where fθ the Probability Density Function (PDF) for the angle θ.
Since the particle is scattered many times inside the cloud, its leaving direction is

randomized and 〈cos θ′2〉 = 0. The probability of a collision at an angle θ1 is proportional
to the relative velocity between the cloud and the particle v − V cos θ1, and so fθ1 ∝
(v − V cos θ1). In the case of a relativistic particle with v ' c the probability is
proportional to 1 +

(
V
c

)
cos θ. From the last relation, it is possible to deduce that

the probability of head-on encounters, p ∝ 1 +
(
V
c

)
cos θ1 is slightly greater than the

probability of following collisions, p ∝ 1−
(
V
c

)
cos θ1.

〈cos θ1〉 =

∫ 1

−1
cos θ1fθ1d cos θ1∫ 1

−1
fθ1d cos θ1

=

∫ 1

−1
(x− βx2)dx∫ 1

−1
(1− βx)dx

= −β
3

(2.11)

Substituting the mean value in expression 2.10 and expanding the result (β � 1)
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2 Cosmic Ray Physics 2.4 Acceleration

〈
∆E

E

〉
=

1 + β2/3

1− β2
− 1 ' 4

3
β2 (2.12)

Since the frontal collision is more probable, the final effect for the particles interact-
ing with the cloud is a gain in energy.

2.4.2 First-order Fermi acceleration

As showed independently by Bell (1978) [7] and by Blandford and Ostriker (1978)
[8] , a charged particle can be efficiently accelerated by a SN remnant shock.

Let us assume a shock front that moves in the interstellar medium with velocity
−u1. As the shock wave travels through the medium all the shocked gas will flow in
the opposite direction with velocity u2 relative to the front (|u1| > |u2|).

Considering that the gas and shock front velocities are low, the velocity of the
shocked gas in the laboratory frame is just the difference between u2 and u1: V =
−u1 +u2. From now on, the procedure is exactly identical to the one applied in second-
order acceleration. In other words, the formula 2.10 remains valid but V is now the
velocity of the shocked gas (downstream) relative to the unshocked gas (upstream).
The only difference is in the way the average over θ is done, since the shock front is
now planar.

The probability that a particle arriving with an angle θ1 (−1 < cos θ1 < 0) crosses
the shock front is proportional to cos θ1, since the shock is planar.

Normalizing the probability distribution∫ 0

−1

A cos θ1 d cos θ1 = 1⇔ A = 2 (2.13)

fθ1 = 2 cos θ1 (2.14)

Similarly,

fθ2 = 2 cos θ2 (2.15)

And so,

〈cos θ1〉 =

∫ 0

−1

2 cos2 θ1 d cos θ1 = −2/3 (2.16)

〈cos θ2〉 =

∫ 1

0

2 cos2 θ2 d cos θ2 = 2/3 (2.17)

〈
∆E

E

〉
=

1 + 4
3
β + 4

9
β2

1− β2
− 1 ' 4

3
β (2.18)

As β � 1, the first-order Fermi acceleration is more effective than the second-order.
After crossing the shock front, the particle is repeatedly scattered by magnetic field
irregularities ahead of the shock, increasing its energy. This mechanism explains the
SCR and ACR acceleration.
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2 Cosmic Ray Physics 2.5 The Heliospheric Environment

2.5 The Heliospheric Environment

2.5.1 Sun’s Magnetic Field

The Sun lies in the spiral arm of our Galaxy, located at a distance of approximately
8.5 kpc from its center, and about 1 AU from the Earth. As many other stars the
Sun has in its interior flowing electric currents. These currents, combined with an high
conductivity, form what is called a Magnetohydrodynamic (MHD) dynamo, which is
responsible for creating the Sun’s magnetic field. The system is self-exciting since the
rotation of the Sun enhances the magnetic field.

The field flips its polarity every 11 years, returning to its original configuration every
22 years. The 11 years periodicity is usually referred to as the Solar Activity Cycle.The
details of the mechanism are still very controversial, but it is well established that the
sunspot number and the 11 years sunspot periodicity are a direct manifestation of the
ropes of the magnetic field lines emerging onto the Sun’s photosphere.

The Sun doesn’t rotate as a rigid body, it possesses a differential rotation, which
means that the equator rotates faster than the poles. The consequence is that the
Sun’s overall magnetic field becomes distorted and twisted over time. The twisted field
lines eventually come through the photosphere, showing their presence as sunspots ( as
depicted in figures 2.3 and 2.4 ).

Figure 2.3: Sunspot formation.

The sunspot number is a good natural monitor of Sun’s activity: when activity
reaches its maximum the sunspot number also reaches its maximum and vice versa.

Experimental observations indicate that, during a solar minimum period, the mag-
netic field is approximately dipole-like, with a magnetic dipole axis almost aligned with
the solar rotation axis, while during the declining phase of the solar cycle the dipole is
more tilted. The angle between the rotation axis and the magnetic axis is known as
the tilt angle α.

Even though the Sun has a complex magnetic field, the dipole term nearly always
dominates the magnetic field. As the Solar activity approaches its maximum, when
the polarity reversing happens, the dipolar shape seems to be no more representative
of the solar magnetic field. Depending on whether the dipole is oriented parallel or
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2 Cosmic Ray Physics 2.5 The Heliospheric Environment

Figure 2.4: Sunspots are regions of the solar surface cooler than the others and visible
on the photosphere as dark areas of irregular shape

anti-parallel relatively to the rotation axis, the solar magnetic epoch is referred to as
A > 0 or A < 0 (figure 2.5).

Figure 2.5: Sun’s magnetic field in several periods.

The link between solar activity and the modulation in intensity of the GCR is ev-
ident from the Neutron Monitors (NM) measurements, available in the last decades.
The NM are a worldwide network of detectors that measure the number of neutrons
reaching Earth’s surface, as a function of time. The surface neutrons come from the
hadronic showers, produced by the interaction of the primary particle with the atmo-
sphere. There are basically two contributions to the total rate of neutrons. The first
one N0 (∼ 5500 counts/min) , is approximately constant in time, and comes from the
interaction of high energy particles (∼100 GeV) with the atmosphere. The second term
N(t) (∼ 500 counts/min ), comes from the interaction of the low energy particles (∼10
GeV) with the atmosphere. This low energy contribution varies with time and depends
on the activity of the Sun. Figure 2.6 shows the Oulu NM counting rate as a function
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2 Cosmic Ray Physics 2.5 The Heliospheric Environment

of time (top plot), and the sunspot number (bottom plot). The clear anti-correlation
between the NM counting rate and the sunspot number indicates that the Solar ac-
tivity has an influence on GCR : at solar maximum there is a minimum of the GCR
intensity, while at solar minimum there is a maximum of the GCR intensity. The flux
on the top of the atmosphere can be calculated using the NM counting rates, if the
yield function of the NM station is known. The yield function depends on the average
depth of atmosphere and cut-off rigidity (see 2.5.4) for the position of the NM station.
After calculating the flux at the top of the atmosphere it is possible to extract the Solar
modulation parameter (the meaning of this parameter will be discussed in Chapter 4).
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Figure 2.6: Solar modulation parameter from NM network data [46] . Sunspot Number (SIDC
Belgium)[9] and neutron rates as measured by Oulu NM station. The anticorrelation between
the neutron counting rates and the sunspot number is evident.

Indeed, it is well established that GCR modulation is due to the fact that CRs
enter the heliosphere and undergo processes such as scattering by the irregularities of
the magnetic field, convection and adiabatic deceleration in the expanding Solar Wind.
The physical mechanisms of the modulation will be studied in the next sections. Here
it is described the structures of the heliosphere that are relevant to the comprehension
of what follows.

2.5.2 Solar Wind and the Heliospheric Magnetic Field

The temperature of the ionized gas inside Sun’s corona is so high that it is not
gravitationally bound to the star and constantly blows away from Sun’s surface to
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maintain the hydrostatic equilibrium [10] . The supersonic solar plasma expanding into
space is called Solar Wind : it consists of a fully ionized gas, basically composed of low
energy electrons and protons (E ' 0.5MeV ), pushed radially out of Sun’s corona.

Due to the high conductivity of the plasma, the magnetic field of the Sun is frozen
into the Solar Wind1. As the Sun rotates in approximately 27 days, the magnetic field
lines, transported by the Solar Wind, get wrapped into an Archimedean spiral in the
Sun’s equatorial plane and in helices out of the equator (figure 2.7). Variations in the
Sun’s magnetic field are consequently carried outward by the Solar Wind.

Figure 2.7: The effect of Sun’s rotation on the magnetic field lines,that bent into Archimedean
spirals. They are drawn here at Solar latitudes of 6, 45 and 84 degree respectively [11].

The heliosphere can be defined as the region in space where the Solar Wind domi-
nates (figure 2.8 ). The plasma pressure fades out with distance until a boundary layer
called heliopause, where there is a pressure balance with the ISM. The point where the
Solar Wind slows down and becomes subsonic is called Termination Shock (TS). On
the other side, the point where the ISM, traveling in the opposite direction, becomes
subsonic as it collides with the heliosphere is called bow shock. In December 2004, the
Voyager 1 spacecraft found the termination shock at a distance of approximately 94 AU
from the Sun.

1see Appendix A for a proof of this effect
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Figure 2.8: The heliosphere, where is clearly visible the Bow Shock, the Heliopause and the
Termination Shock.

In a frame with origin at the Sun, the HMF has the following expression in spherical
coordinates2

~B =
A

r2
(~er − tan Ψ~eφ)

[
1− 2H

(
θ − π

2

)]
(2.19)

where Ψ is the angle between the radial and azimuthal components of the HMF,H is
the Heaviside step function and A is a constant. The two heliospheric hemispheres are
separated by a flat surface (θ = π/2) - the Heliospheric Current Sheet (HCS) - which
is effectively the extension of the solar magnetic equator into the Solar Wind. Above
π/2 the field points in one direction and below π/2 the field reverses its direction. This
expression is only valid for periods when the dipole and rotation axis are aligned (dur-
ing Solar minimum). When the magnetic and rotation axes are not aligned, the flat
current heliosheet turns into a wavy one - the so called ballerina skirt (figure 2.10).

The angle between the rotation and magnetic axes (tilt angle) is of course propor-
tional to the latitudinal extent of the HCS, in other words, large tilt angles correspond
to a more undulated HCS.

As a consequence of the wavy character of the HCS, expression 2.19 must be cor-
rected. The division between the two heliospheric hemispheres, which was previously a
flat surface (θ = π/2), is now a complex wavy structure.

The derivation of the HCS expression is an easy trigonometrical exercise, that can
be done by considering two planes tilted at an angle α relative to each other (fig. 2.9).

2as deduced in Appendix B and depicted in 2.7
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Figure 2.9: Two planes tilted at an angle α relative to each other.

According to the figure
y

x
= tan θ∗ (2.20)

y

x sinφ∗
= tanα (2.21)

Plugging these two last expressions together

tan θ∗ = sinφ∗ tanα (2.22)

Now, if the plane with φ∗ is assumed to be at π/2, then the angle θ′ can be defined
as θ′

= π/2− θ∗. Therefore

tan(π/2− θ′
) = sinφ∗ tanα = ξ (2.23)

And so,

θ
′
= π/2− tan−1(tanα sinφ∗) (2.24)

The last step is just the substitution of the expression for φ∗ = Ω r−r0
V

+ φ0, which
can be easily derived using the first two equations of Appendix B, in equation 2.24.

The final expression for the HCS (as depicted in figure 2.10(b))is

θ
′
= π/2− tan−1

[
tanα sin

(
Ω
r − r0

V
+ φ0

)]
(2.25)
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and the correct expression for the HMF is

~B =
A

r2
(~er − tan Ψ~eφ)

[
1− 2H(θ − θ′

)
]

(2.26)

During one solar rotation, the HCS fills a region lying between π/2 − α ≤ θ
′ ≤

π/2 +α. The frequency of the HCS depends on the angular velocity of the Sun Ω, and
the Solar Wind velocity V , while the phase is given by φ0, V and r0, the radius of the
Sun.

(a) (b)

Figure 2.10: a) HCS. Note that the current sheet separates zones with different magnetic
polarities. b) Drawing of the wavy neutral current heliosheet

The Solar magnetic polarity and the structures of the HMF are related to the mod-
ulation of GCR depending on the charge-sign of the particle (the HCS is responsible for
some of the drift terms that appear in the transport equation of cosmic rays [12]). Ac-
tual observations and theories about charge-dependent GCR modulation link together
the solar magnetic polarity and the structures of the magnetic field, as they result in
different drift patterns for different charges in the heliosphere.

This last fact is visible in NM data of figure 2.6. It shows, in addition to the 11
years periodicity,the existance of a profile that can be referred to the HMF polarity: the
shape of sucessive maxima alternates between a broad flat and a more narrow peaked
one.

This kind of observation is very important and constitutes the first evidence that
the solar modulation has a 22 years periodicity and that the orientation of the solar
magnetic dipole has an effect on GCR propagation. This periodicity is seen in the NM
counting rates but not in the Sunspot number, which indicates that it might not be the
best proxy for the solar modulation of GCR’s. It also means that it is not the status of
the Sun that directly guides the transport of the GCR’s, but rather the status of the
heliosphere they move through.
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2.5.3 Propagation in the Heliosphere: Parker Model

This model was proposed by Parker in 1964 [13], and it is based on the assumption
that the GCR reach the heliophere isotropically, and after entering it, face an outward
Solar Wind and the HMF.

The HMF can be divided in two parts:

1. The large scale HMF responsible for the drifts and curvatures of the guiding
centres of the particles

2. Small scale irregularities

The inclusion of these small scale irregularities by Parker was based in the measure-
ments done by Explorer XVIII, that registred small fluctuations in the HMF of about
105 km -107 km. These fluctuations play a very important role in the propagation of
the GCR inside the Solar cavity, since they are responsible for the diffusion of low
energy particles. Another aspect that will help the diffusive character of the transport
is the very low density of cosmic rays when compared with the density of Solar Wind
particles.

To better understand the underlying phenomenon, consider a particle with a gy-
roradius much grater than the scale of the fluctuations in the magnetic field. This
particle will follow its trajectory without noticing the presence of the magnetic field
irregularities.

Figure 2.11: Dynamics of a charged particle in a magnetic field when the dimension of the
irregularities is smaller than the gyroradius

However, if the fluctuations have the same scale as the gyroradius of the particles,
there is a significant amount of scattering. The scattering of the particles by random
superposition of these fluctuations leads to stochastic changes (random walk) in the
pitch angle of the particles ( angle between ~v and ~B ). The result is a diffusive phe-
nomenon.

Knowing the dimensions of the fluctuations, it is easy to calculate the magnetic
rigidity R, at which the magnetic fluctuations are important in scattering the parti-
cles3.The gyroradius of a particle in terms of its magnetic rigidity is:

rg =
pc

Ze
· 1

Bc
=

R

Bc
(2.27)

3notice that particles with different masses and charges, but with the same magnetic rigidity have
the same dynamics under any magnetic field distribution
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where it has been assumed ~B ⊥ ~v (pitch angle of 90◦). Equating this gyroradius to
the wavelenght at which there is more power in the power spectrum of the magnetic
irregularities - 109m (assuming an average HMF of 3nT)

R = 3nT · c · 109m ≈ 1GV (2.28)

This rigidity is remarkably similar to that at which the spectra of GCR protons
and nuclei become strongly influenced by Solar modulation 2.1(b). The important
assumption is that the magnetic field irregularities are random.

This diffusive transport is described by a diffusion coefficient, in this case a tensor
Kij. The motion is brownian and does not preserve the memory of the past, meaning
that each increment is independent of the previous one.

Introducing the classic particle distribution probabilityW (xi, t) (number of particles
per unit volume) it is easy to see that the quantity −Kij

∂W
∂xj

is just the flux of particles
in the frame comoving with the magnetic irregularities responsible for the scattering.
The irregularities are also moving with velocity equal to the solar wind velocity VSW ,
and so giving rise to a convective flux of the form VSWiW .

Applying the continuity equation it is possible to write the diffusion equation or
Fokker-Planck equation as:

∂W

∂t
+

∂

∂xi
(VSWiW )− ∂

∂xi
(Kij

∂W

∂xj
) = 0 (2.29)

or

∂W

∂t
+∇ · ~S = 0 (2.30)

Si = VSWiW −Kij
∂W

∂xj
(2.31)

where ~S is the flux vector containing the diffusive and convective terms.
Now, while the energetic particle is riding along with the fields in the wind, the

magnetic field itself is expanding because of the divergence of the wind, which makes
the particle lose energy - adiabatic cooling.

To prove the last statement, consider two frames of reference:

• O fixed;

• O′ moving with the Solar Wind velocity V;

If the velocities involved are non-relativistic3 :

~v′ = ~v − ~V (2.32)

~p′ = ~p−m~V (2.33)
3The relativistic case is very similar and straightforward. The Galilean Transformation is replaced

by the Lorentz formula for adding velocities : v′ = v−V
1− v·V

c2
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If the electric field is negligible, when compared to the average magnetic field, the
force applied in a particle of charge q is

d~p

dt
= q(~v − ~V )× ~B (2.34)

In the moving frame, ~p′ is a function of xi, ~p and t and so

d~p′

dt
=
∂~p′

∂t
+ ~v · ∂

~p′

∂xi
+
d~p

dt
· ∂
~p′

∂~p
(2.35)

Deriving the expression 2.33 with respect to t, xi and ~p

∂~p′

∂t
= −m∂~V

∂t
(2.36)

∂~p′

∂xi
= −m∂~V

∂xi
(2.37)

∂~p′

∂~p
= I (2.38)

Substituting 2.32 into 2.34

d~p

dt
= q~v′ × ~B (2.39)

Now, having all the terms, eq. 2.35 can be rewritten as

d~p′

dt
= −m∂~V

∂t
−mv · ∂

~V

∂xi
+ q~v′ × ~B (2.40)

The variation of the magnitude of the momentum - dp′

dt
- can be obtained by deriving

the expression p′2 = ~p′ · ~p′
dp′

dt
=
~p′

p′
· d
~p′

dt
(2.41)

And finally
dp′

dt
= −

~p′

p′
·

[
m
∂~V

∂t
+ (~p′ +m~V ) · ∂

~V

∂xi

]
(2.42)

where ~p′ · (~v′ × ~B) = 0 was used.
The average dp′

dt
≡
〈
ṗ′
〉
for a group of particles, all with the same momentum magnitude

p′ but with different directions is:

〈ṗ′〉 =

∫
Ω′

dp′
dt
FdΩ′∫

Ω′ F dΩ′
(2.43)

where dΩ′ is the infinitesimal solid angle interval.
Assuming an isotropic momentum distribution F (r, p′, t)∫

Ω′ dΩ′ = 4π;
∫

Ω′
~p′dΩ′ = 0;

∫
Ω′
~p′~p′dΩ′ = 4πp′2

3
I; (2.44)
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expression 2.43 can be written in the following form

〈
ṗ′
〉

= −p
′

3
∇ · ~V (2.45)

or in terms of kinetic energy T ′

1

p′
〈
ṗ′
〉

=
1

p′
dp′

dT ′

〈
Ṫ ′
〉

=
E ′

p′2

〈
Ṫ ′
〉

=
T ′ +m

T ′(T ′ + 2m)

〈
Ṫ ′
〉

=
1

T ′α(T ′)

〈
Ṫ ′
〉

〈
Ṫ ′
〉

= −α(T ′)
T ′

3
∇ · ~V (2.46)

where α(T ′) = T ′+2m
T ′+m

. This means α(T ′) = 2 for nonrelativistic particles and α(T ′) = 1
for extreme relativistic particles.

This result is very important and tells that particles will lose energy, regardless of
the choice of the scattering model.

Since particles will change their energy due to the movement of the Solar Wind it
is more interesting to work with the phase space density Up(xi, p, t) instead of working
only with space density W (xi, t).

W (xi, t) =

∫ ∞
0

Up(xi, p, t)dp (2.47)

Now, it is possible to apply the continuity equation not to a simple 3-dimensional
volume, where the 3 coordinates correspond to x, y, z but to a 4-dimensional volume,
adding the momentum as the fourth coordinate

dUp(xi, p, t)

dt
= −∂Φxi

∂xi
− ∂Φp

∂p
(2.48)

where Φp is the number of particles that pass through the momentum boundary per
unit of time and Φxi is the number of particles that pass through the space boundaries
per unit of time.

Up(xi, p, t)
dp

dt
= Φp (2.49)

then the Fokker-Planck equation for Up is

∂Up
∂t

+
∂

∂xi
(UpVSWi) +

∂

∂p

(
Up
dp

dt

)
− ∂

∂xi

(
Kij

∂Up
∂xj

)
= 0 (2.50)

or using 2.45

∂Up
∂t

+

convection︷ ︸︸ ︷
∂

∂xi
(UpVSWi)−

adiabatic losses︷ ︸︸ ︷
1

3
∇ · ~VSW

∂

∂p
(Upp)−

diffusion and drifts︷ ︸︸ ︷
∂

∂xi

(
Kij

∂Up
∂xj

)
= 0 (2.51)
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2 Cosmic Ray Physics 2.5 The Heliospheric Environment

Figure 2.12: Illustration showing the several contributions to the propagation of GCR’s inside
the Heliosphere.

Now that the transport equation has been derived, the reader may have noticed that
the same equation could have been deduced using another density function, the cosmic
ray number density per unit of kinetic energy - UT -, instead of the cosmic ray number
density per unit of momentum -Up.

[UT ] =
particles

m3 · T
[Up] =

particles

m3 · p
(2.52)

The derivation of the transport equation in terms of UT is very similar, but using
2.46 instead of 2.45

∂UT
∂t

+
∂

∂xi
(UTVSWi)−

1

3
∇ · ~VSW

∂

∂T
(α(T )UTT )− ∂

∂xi

(
Kij

∂UT
∂xj

)
= 0 (2.53)

Indeed, there is also an additional third way of writing the transport equation in
terms of the omnidirectional cosmic ray distribution function f0, a function of cosmic
ray position and momentum at time t.

[f0] =
particles

m3 p3
(2.54)

In this case the transport equation is given by4

∂f0

∂t
= −∇ · ~S +

1

3
∇ · VSW

∂f0

∂ ln p
(2.55)

4a careful derivation of this equation can be found in Webb and Gleeson [1979] [13]
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2 Cosmic Ray Physics 2.5 The Heliospheric Environment

where

~S = 4πp2(CVSW −K · ∇f0) (2.56)

is the differential current density, and

C = −1

3

∂f0

∂ ln p
(2.57)

is the Compton-Getting coefficient,i.e., one third of the spectral index of a power law
spectrum in momentum space.

Substituting ~S in equation 2.55

∂f0

∂t
= ∇ · (K · ∇f0)− VSW · ∇f0 +

1

3
∇ · VSWp

∂f0

∂p
(2.58)

Having 3 ways of writing the same equation it is natural to study the relation
between the different number densities -UT , Up- and the omnidirectional distribution
function -f0. To begin the study, it is firstly assumed that the cosmic ray distribution
function f(r, p, t) can be written as ([14],[15],[16])

f(r, p, t) = f0(r, p, t) +
3~p · ~f1

p
(2.59)

where the component f0, the omnidirectional distribution function, is a scalar that does
not depend on the direction in space, and f1 is a vectorial quantity that depends on
the direction.

By definition

Up(r, p, t) = p2

∫
Ω

f(r, p, t) dΩ (2.60)

Assuming that f1 is constant in magnitude and along the x-direction

Up(r, p, t) = p2

∫ π

0

∫ 2π

0

(f0 + 3f1 sin θ cosφ) sin θ dθ dφ = 4πp2f0 (2.61)

The goal is to relate all the number densities and the distribution function with a
measured quantity: the differential intensity.

The definition of differential intensity is just the number of particles dN that cross
a differential area element dA, perpendicular to momentum vector ~p in the interval
[p, p+ dp] within dΩ, in interval dt.

dN = JP dA⊥ dt dΩ dp (2.62)

All particles crossing the above mentioned surface must have come from a cylinder
with length vdt and cross sectional area dA⊥, implying that there were
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2 Cosmic Ray Physics 2.5 The Heliospheric Environment

dN = f v dt d3p dA⊥ = v f p2 dt dp dΩ dA⊥ (2.63)

and so

JP = vp2f(x, p, t) (2.64)

The mean value of JP : 〈JP 〉 is the omnidirectional differential intensity

〈JP 〉 =

∫
Ω
JPdΩ∫
Ω
dΩ

=
1

4π

∫
Ω

JPdΩ =
vUP
4π

= vp2f0 (2.65)

[JP ] =
particles
m2 s p sr

with momentum in d3p about p

[〈JP 〉] =
particles
m2 s p sr

with all the possible momentum in the interval [p,p+dp]

Geometrically, this means that 〈JP 〉 is the algebraic sum of JP , normalized to the
unit solid angle.

It is also possible to calculate the differential intensity per unit of energy

JP =
dT

dp
JT = vJT (2.66)

2.5.4 Earth’s Magnetic Field

Before reaching Earth, a charged particle has to face the opposition of the geomag-
netic field, which will curve its trajectory and consequently sets an energy limit below
which, the particle cannot pass the magnetic barrier. The Geomagnetic Field is, in first
approximation, a magnetic dipole located a few kilometers from the center of the Earth
and roughly pointing south.

The Geomagnetic Coordinate System (figure 2.14(a) ) is defined so that its Z-axis is
parallel to the magnetic dipole axis. The angles are defined somehow differently from
those conventionally used in physics: the geomagnetic latitude λ is the angle measured
from the geomagnetic equator, defined as the plane normal to the dipole axis, to the
point considered and containing Earth’s center.

The geomagnetic cut-off was derived by Stöermer in the mid-twentieth century, and
represents the minimal rigidity a charged particle must have to reach a point located
at an altitude h above the surface, and at the the geomagnetic latitude λ.

This cut-off also depends on the East-West angle α (figure 2.14(b) ), corresponding
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Figure 2.13: Rates measured by the AMS-02 detector at different geomagnetic latitudes (in
radians). Note that, as the latitude increases, the rigidity cut-off decreases.

to the angle between the velocity of the particle and the East-West direction.
The expression for the cut-off is

Rcut =
60(

1 + h
re

)2

cos4 λ[√
1 + cosα cos3 λ+ 1

]2 [GV] (2.67)

The cut-off rigidity is higher in the equator and lower in the poles,as can be seen in
figure 2.13, allowing that an higher number of CRs reach the poles.
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(a)

(b)

Figure 2.14: a) Geographic and Geomagnetic Coordinates. [17]. b) The Rigidity Cut-off as
a function of the geomagnetic latitude [18]
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3
Solutions to the transport equation

The main objective of this chapter is to explore the several approaches to solve the
Transport Equation (TPE), from the Force Field Solution to the 1D and 2D numerical
models

The transport equation 2.58 can be written in a spherical coordinate system rotating
with the Sun [19], as

∂f

∂t
=

[
1

r2

∂

∂r
(r2Krr) +

1

r sin θ

∂

∂θ
(Kθr sin θ) +

1

r sin θ

∂Kφr

∂φ
− V

]
∂f

∂r
(3.1)

+

[
1

r2

∂

∂r
(rKrθ) +

1

r2 sin θ

∂

∂θ
(Kθθ sin θ) +

1

r2 sin θ

∂Kφθ

∂φ

]
∂f

∂θ

+

[
1

r2 sin θ

∂

∂r
(rKrφ) +

1

r2 sin θ

∂

∂θ
(Kθφ) +

1

r2 sin2 θ

∂Kφφ

∂φ

]
∂f

∂φ

+ Krr
∂2f

∂r2
+
Kθθ

r2

∂2f

∂θ2
+

Kφφ

r2 sin2 θ

∂2f

∂φ2
+

2Krφ

r sin θ

∂2f

∂r∂φ

+
1

3r2

1

∂r
(r2V )

∂f

∂ ln p

with V, the radial Solar Wind velocity, and Kij the diffusion tensor in spherical
coordinates.

3.1 The Diffusion Tensor and Drifts
As seen in Chapter 2, diffusion is a stochastic process, resulting from pitch-angle

scattering of charged particles at magnetic field irregularities.
When a spiraling charged particle encounters an irregularity in a magnetic field line

- which has a size similar to the gyroradius of the particle - then the trajectory of the
particle depends strongly on the phase of the gyromotion during the interaction. As
can be seen in figure 3.1 Some particles will pass through the irregularity (e), others will
be reflected back along the field line (f), while still others will effectively "get stuck" in
the vicinity of the the irregularity (g). This basically means that the pitch angle of the
particle is randomly scattered.

29



3 Solutions to the transport equation 3.1 The Diffusion Tensor and Drifts

However, when charged particles encounter magnetic field irregularities, there is an
additional variable that can change (besides the pitch angle) : the gyrophase. Physically
this happens because the gyroradius is "squeezed" when the field is suddenly stronger,
or enlarged when the field is weaker. The global effect of this phenomenon is that the
particle will attach itself to a neighboring field line (h). Since this is also a random
process, it leads to a diffusive flux perpendicular to the background magnetic field.

Figure 3.1: Charged Particle Motion in magnetic field (adapted from [20])

The diffusive flux has now a component parallel to the background magnetic field,
with diffusion tensor K‖, and one perpendicular, with diffusion tensor K⊥ (in the he-
liosphere the weak-scattering limit is valid - K⊥ << K‖) .

The theory of scattering parallel to the background magnetic field is fairly well un-
derstood in terms of the so-called Quasi-Linear Theory (QLT) of scattering, developed
by Jokipii in 1966 [21]. QLT holds for weak fluctuations, when δB2/B2 << 1, and the
parallel diffusion coefficient can be calculated if the power spectrum of the fluctuations
in the magnetic field, δB2, is known. By measuring the spectrum throughout the helio-
sphere it is possible to determinate a diffusion coefficient depending on the momentum
of the particle and on space position.

Potgieter and Le Roux [22] suggested that the parallel diffusion coefficient is given
by the following expression

K‖ ≈ βk1(r)kR(R)
B0

3B
(3.2)

with β, the velocity of the particle divided by c, k1(r), the term that accounts for the
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3 Solutions to the transport equation 3.1 The Diffusion Tensor and Drifts

dependence in position, kR(R) , the rigidity dependent term, B the magnitude of the
large scale HMF and B0 the value of the HMF at Earth’s orbit. The term kR is usually
expressed in GV and, to a first approximation, can be written as

kR ≈ R (3.3)

The theory of perpendicular diffusion is much more complicated, and remains one of
the biggest theoretical problems in cosmic ray modulation theory. The current theory
is non-linear in nature, and was introduced by Mathhaeus et al. (2003) [23].

Due to the absence of a precise theory, the normal procedure when dealing with the
perpendicular diffusion coefficient is to scale it relatively to K‖. Usually

K⊥ = ρK‖ (3.4)

with ρ ≈ 0.05 .
The last paragraphs show that the presence of a large-scale magnetic field forces the

diffusion to become anisotropic and a diffusion tensor Kij must be used.
In a reference system with the third coordinate along the average magnetic field, the

symmetric part of the diffusion tensor, for isotropic perpendicular diffusion, includes
both the transverse - K‖ - and perpendicular -K⊥ - components [24].

KS
i,j =

K‖ 0 0
0 K⊥ 0
0 0 K⊥

 (3.5)

Another effect of the presence of a large-scale magnetic field, that contributes to the
transport of particles, is the existence of curvature and gradient drifts. Curvature drifts
result from the centrifugal force a particle experiences when traveling along a curved
magnetic field. Gradient drifts are a consequence of changes in the particle gyroradius
during one gyration, due to changes in the magnetic field strength. As shown by Parker
[1957][25], for an isotropic particle distribution, or for one with at most a first-order
anisotropy (i.e. weakly anistropic), the combined gradient and curvature drift velocity
of the distribution is given by

〈 ~vdr〉 =
βR

3
∇×

~B

B2
(3.6)

A further simplification results from a mathematical trick, which consists in formu-
lating the drift term as an antisymmetric element of the diffusion tensor. Defining the
drift coefficient

KA =
βR

3B
(3.7)

so that

〈 ~vdr〉 = ∇× (KAeB) (3.8)
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with eB =
~B
B

and B the HMF expression.
Then, the combined diffusion tensor is

Ki,j = KS
i,j +KA

i,j =

K‖ 0 0
0 K⊥ KA

0 −KA K⊥

 (3.9)

which includes all the diffusive and drift terms, that can now be contracted in one single
term in the transport equation K · ∇f .

The diffusion tensor 3.9 is written in a coordinate system connected to the magnetic
field. This coordinate system will be called the magnetic coordinate system.

In this system (fig. 3.2), there is one axis e‖, parallel to the average magnetic field
in the rφ - plane, a second axis e1 in the polar direction eθ, and a third one e2 also in
the rφ - plane .

e‖ = cos Ψer − sin Ψeφ (3.10)
e1 = eθ (3.11)
e2 = e‖ × e1 = sin Ψer + cos Ψeθ (3.12)

Figure 3.2: The magnetic coordinate system.

However, in equation 3.1, the diffusion tensor is written in spherical coordinates,
and so a transformation matrix R must be applied

R =

 cos Ψ 0 sin Ψ
0 1 0

− sin Ψ 0 cos Ψ

 (3.13)
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Krr Krθ Krφ

Kθr Kθθ Kθφ

Kφr Kφθ Kφφ

 = RKRT (3.14)

=

 cos Ψ 0 sin Ψ
0 1 0

− sin Ψ 0 cos Ψ

K‖ 0 0
0 K⊥ KA

0 −KA K⊥

cos Ψ 0 − sin Ψ
0 1 0

sin Ψ 0 cos Ψ


=

K‖ cos2 Ψ +K⊥ sin2 Ψ −KA sin Ψ (K⊥ −K‖) cos Ψ sin Ψ
KA sin Ψ K⊥ KA cos Ψ

(K⊥ −K‖) cos Ψ sin Ψ −KA cos Ψ K‖ sin2 Ψ +K⊥ cos2 Ψ


3.2 Force Field Approximation

The transport equation can only be solved numerically. However, by doing many
approximations, Gleeson and Axford (1968) [26] reduced the problem to a 1D spher-
ically symmetric case that can be solved analytically. This is the so called force field
approximation and today it is still the simplest and most used model for studying the
effects of solar modulation.

It is assumed that:

• The Solar Wind is radially moving with constant speed V

• The diffusion tensor in eq. 3.5 is isotropic (K ‖= K ⊥) and constant with radius

• The density distribution function is spherically symmetric

• There is no drift (the antisymmetric part of K is neglected)

• The system is in quasi-stationary conditions ∂f
∂t

= 0

The steady-state condition means that the relaxation time of the distribution is
short with respect to the solar cycle duration (11 years), so that one can assume that
the time derivative of f is zero.

Using the previous assumptions, the majority of the terms in equation 3.1 vanish,
and a simplified TPE is obtained

∂f

∂t
= −V ∂f

∂r
+

1

r2

∂

∂r

(
r2k

∂f

∂r

)
+

1

r2

∂

∂r
(r2V )

R

3

∂f

∂R
(3.15)

where R is the particle rigidity and k the contracted diffusion tensor. It can be proved
that, in case there are no sources or sinks at r = 0 and the system is in stationary
conditions ∂f

∂t
= 0, it can be assumed that the diffusive flux is equal to the convective

flux, for particles with energy above 400 MeV/nucleon [26] .

k
∂f

∂r
= V f (3.16)
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Inserting 3.16 in 3.15, a new differential equation arises, called force field approxi-
mation

∂f

∂r
+
V R

3k

∂f

∂R
= 0 (3.17)

The name "force field" comes from the fact that the second term has the dimensions
of potential per unit lenght, or a field. The solutions of 3.17 are characteristic curves,
where f is a constant in the (r,R) plane:

df

dr
=
∂f

∂r
+
∂f

∂R

dR

dr
(3.18)

From 3.17 and 3.18 it can concluded that

dR

dr
=
V R

3k
(3.19)

Using k = k0βR from the QLT

dR

dr
=

V R

3k0βR
(3.20)

and so
βdR =

V

3k0

dr (3.21)

The last expression can also be written in terms of E, since E =
√
p2 +m2 and

βdR = dE.

dE =
V

3k0

dr (3.22)

Such expression has the following solution

E(rH)− E(r) = ΦSM
rH − r
rH − 1

(3.23)

where E(rH) and E(r) are, respectively, the energies at the external boundary of the
heliosphere and the observation point at Earth, and ΦSM is

ΦSM =

∫ rH

r1AU

V

3k0

dr =
V (rH − 1)

3k0

(3.24)

Since f is constant along the characteristic curve:

f(1AU,E(rH)− ΦSM) = f(rH , E(rH)) (3.25)

Finally, using the identity p2 = E2 −m2, it is possible to calculate the differential
flux JT = p2f that reaches Earth

JT (1AU,E(rH)− ΦSM) = JT (rH , E(rH))
E(rH)2 −m2

E(1AU)2 −m2
(3.26)
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where the Solar modulation parameter φSM is defined by the relation ΦSM = |Z|eφSM .
The Solar modulation parameter can be seen as an average potential, felt by a

particle when crossing the heliosphere, causing an adiabatic deceleration1.

E(1AU) = E(rH)− |Z|eφSM (3.27)

The typical values for it range from 0.5 to 1.2 GeV. The flux at the boundaries of the
outer heliosphere JT (rH) can be taken as the local interstellar flux JLIS.

Notice that originally it was assumed that the adiabatic energy losses were negligible
when compared to the two spatial streaming terms. However, the Force Field formalism
ends up with a parameter ΦSM , which causes energy losses. This is due to the fact that
the coefficient V R

3k
was interpreted as a field. There is no physical explanation that

relates this field/energy loss to the true adiabatic energy loss, although it seems quite
an unusual coincidence that this energy loss is a good approximation of the adiabatic
energy losses in certain circumstances. In fact, Gleeson and Urch [1971] [27] showed
that the force field energy loss is an upper limit of the true adiabatic loss.

In figure 3.3 it is shown the flux dependence on the parameter φSM , and in figure
3.4 it is possible to see how does the φSM changes within one Solar cycle (the parameter
was obtained using the NM network data).
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Figure 3.3: Sensibility of the flux for different Solar modulation parameters (LIS: Usoskin).

1The parameter can only be seen as an energy loss because k∝R.
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Figure 3.4: Top plot: Solar modulation parameter from 1990 to 2002 (NM network). Bottom
plot: Monthly variations of φSM and respective distribution. Next to a Solar maximum, the
variations of the Solar modulation parameter can be very high (few hundred MV per month).

3.3 The LIS Spectra
The interstellar flux is quite peculiar, since it has never been directly measured

before. In fact, in the 15th of June 2012, NASA announced that Voyager 1, launched
in 1977, was entering the interstellar space at a distance where radio signals from the
craft required 16 hours and 38 minutes to reach the antennas of NASA’s Deep Space
Network. Some of the detectors inside Voyager 1 are still active and one of them is
even responsible for measuring fluxes of CRs. The fluxes detected, although restricted
to a short energy range, will give a first experimental hint about the shape of the LIS
spectra.

The absence of experimental data about the Local Interstellar Flux (LIS) spectra
didn’t stop physicists from making predictions about its structure. Many of these
predictions were done using Monte Carlo simulations, such as the Monte Carlo Diffusion
Model (MCDM) and other GCR propagation models, such as the one from Moskalenko
et al.

As seen in the last section, the Force Field approximation depends on the choice of
the interstellar flux, JLIS. The following proton LIS fluxes (published in the literature)
will be analyzed in order to understand the influence of a specific LIS flux on the Solar
modulation parameter [33]. For the next parametrizations, the proton flux will be given
in particles per m2 s sr (GeV/nucleon), T represents the kinetic energy in GeV/nucleon
and m the rest mass in GeV.
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Usoskin et al. (2005) parametrization [28]

JUSO5 =
a

b[T (T + 2m)]1.39 + c[T (T + 2m)]0.135
(3.28)

with a = 4.157× 105, b = 21.9 and c = 10.6

Garcia-Munoz et al. (1975) parametrization [29]

JGM75 = a[103T + becT ]−2.65 (3.29)

with a = 9.9× 1011, b = 780, and c = −0.25

Webber and Higbie (2003) parametrization [30]

JWH03 =
103

aT 2.8 + bT 1.58 + cT 0.26
(3.30)

with a = 4.75× 10−2, b = 0.278 and c = 5.62× 10−2

Langner et al. (2003) parametrization [31]

JLA03 =

{
103exp(a− b ln2(103T ) + ln 103T − d

√
103T ) if T ≥ 1GeV/nucl

exp(e− f ln(103T ) + g
T

) if T < 1GeV/nucl
(3.31)

with a = 0.823, b = 0.08, c = 1.105, d = 9.202×10−2, e = 22.976, f = 2.86 and g = 1.5.

Webber and Higbie (2009) parametrization [32]

JWH09 = 103exp[a+b ln2(ln(103T ))+c
√

ln(103T )+d ln−1(103T )+e ln−2(103T )] (3.32)

For T < 1GeV/nucl the parameters are a = −124.5, b = −51.8, c = 131.6, d =
−241.7, e = 376.7, whereas for T ≥ 1GeV/nucl, a = 0, b = −51.7, c = 103.6, d =
−709.7 and e = 1161.6 .

In figure 3.5 , all the above LIS fluxes are ploted as a function of the kinetic energy.
As can be seen in the ratio plot, the difference between some of the fluxes is quite
significant in the low energy region, whereas in the high energy region the agreement
is substancially better. Dispite the differences, all the LIS fluxes can parametrize the
flux in the vicinity of the Earth by using a modulation parameter - φSM . As shown by
Herbst and Heber [33], all the LIS fluxes can represent fairly well the modulated flux
with their individual modulation parameter. It is possible to find relations between all
these model-dependent φSM , which was firstly done by Usoskin et al [2005] [28], who
found a set of linear relations between the modulation parameters.
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Figure 3.5: LIS proton fluxes as a function of energy. The sub-plot is the ratio between each
of the JLIS proton fluxes and JUSO5.

3.4 The 1D numerical solution
In the 1D numerical solution, the assumptions are the same as in the Force Field

approximation, except for the fact that the adiabatic energy losses are kept, i.e, equation
3.16 is not used, and the Solar Wind speed can be space dependent.

The objective is to solve 3.15 and determine f in the region r0 ≤ r ≤ rH , where
rH is the outer boundary of the heliosphere. The functions V (r), k(r, T ) and also the
unmodulated spectrum at the boundary of the heliosphere, are known.

Since 3.15 is a parabolic Partial Differential Equation (PDE) that is second order in
space and only first order in energy - there should exist two boundary conditions and one
initial condition. The first boundary condition is at r0 (Sun’s radius), where the absence
of any sources or sinks is assumed, since only GCR are being concerned. Mathematically
speaking, this is assured by requiring that the differential current density - ~S in equation
2.56 vanishes at the origin.

~S = 4πp2

(
CVSW − k

∂f

∂r

)
(3.33)

One way of accomplishing this requirement is if

VSW |r=r0 = 0 (3.34)
∂f

∂r

∣∣∣
r=r0

= 0 (3.35)
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The other boundary condition is just requiring that the flux of GCR at the boundary
of the heliosphere is equal to the interstellar flux

JT

∣∣∣
r=rH

= p2f = JLIS (3.36)

The initial condition results from the fact that at sufficient high energies, the flux
inside the heliosphere is equal to the interstellar flux.

JT (r, p′) = JLIS(p′) for all r0 < r < rH (3.37)

The general method to solve this equation is using finite differences. The domain
will be divided in a rectangular grid, with r ranging from r0 to rH and ln p ranging
from ln pmin to ln pmax.

r = r0 + ih (3.38)
ln p = ln pmin + nk

(3.39)

Figure 3.6: Rectangular grid.

It begans with the initial condition at ln pmax and then proceeds to lower energies
in a iterative way.
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For the finite difference treatment it is convinient to rewrite the transport equation
3.15 in the form

a
∂2f

∂r2
+ b

∂f

∂r
+ c

∂f

∂ ln p
= 0 (3.40)

After some algebra, it is possible to obtain some expressions for the coefficients a,b
and c:

a = k (3.41)

b = −V +
2k

r
+
∂k

∂r
(3.42)

c =
2

3

V

r
+

1

3

∂V

∂r
(3.43)

When dealing with numerical problems, it is always recommendable to rewrite the
equation in a non-dimensional form, by defining some typical momentum and space
scales - PS and LS.

r̃ =
r

LS
, p̃ =

p

PS
(3.44)

From now on, the use of r̃ or p̃ will be avoided in order to simplify the notation,
and every time an r or p appears, its meaning is the non-dimensional variable.

The next step - and this is what makes this procedure a finite difference method -
is to approximate the partial derivatives as differences in near grid points.

∂f

∂ ln p
=

fn+1
i − fni

k
(3.45)

∂f

∂r
=

fn+1
i+1 − fn+1

i−1

2h
∂2f

∂r2
=

fn+1
i+1 − 2fn+1

i + fn+1
i−1

h2

fni = f(rmin + ih, ln pmin + nk)

In the space direction, the differences have been centered about the point (i, n+ 1)
to give second order accuracy to the approximation. These expressions could then be
substituted into the transport equation, giving the following solution

fni =

(
−ka
h2

+
kb

2h

)
fn+1
i−1 +

(
2kc

h2
+ 1− kc

)
fn+1
i +

(
−ka
h2
− kb

2h

)
fn+1
i+1 (3.46)

Now, it is possible to compute all the fni from the fn+1
i and obtain f for the entire

grid. Note that at each iteration the boundary conditions must be verified.
The solution to this equation is second order accurate in space, but only first order

accurate in ln p, and very easy to implement. However there are some drawbacks,
mainly because the numerical solution is unstable unless the ratio k/h2 is sufficiently
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small. Instability means that small errors due, either to arithmetic inaccuracies, or to
the approximate nature of the derivative expressions will tend to accumulate and grow
as one proceeds rather than dampen out (see Lapidus and Pinder 1982 [36] for a careful
discussion of stability issues).

The instability problem can be solved if an implicit finite difference scheme is used,
in this case the Cranck Nicholson (CN) algorithm. The CN has the advantage of
being unconditionally stable, regardless of the value of k/h2, and also is second order
accurate in both the space and momentum directions. The key difference in this kind
of algorithm is that the partial derivatives are averages for momentum n and n+ 1:

∂f

∂ ln p
=

fn+1
i − fni

k
(3.47)

∂f

∂r
=

fn+1
i+1 − fn+1

i−1 + fni+1 − fni−1

4h
∂2f

∂r2
=

fni+1 − 2fni + fni−1 + fn+1
i+1 − 2fn+1

i + fn+1
i−1

2h2

Substituting the last expressions in the transport equation

Bi︷ ︸︸ ︷( c
k

+
a

h2

)
fni +

Ai︷ ︸︸ ︷(
b

4h
− a

h2

)
fni−1 +

Ci︷ ︸︸ ︷(
− b

4h
− a

h2

)
fni+1 = (3.48)( c

k
− a

h2

)
fn+1
i +

(
− b

4h
+

a

h2

)
fn+1
i−1 +

(
b

4h
+

a

h2

)
fn+1
i+1︸ ︷︷ ︸

Di

The fni cannot be calculated as a simple linear combination of fn+1
i , but are rather

the solution of a system of linear equations. This system forms a matrix with a partic-
ular shape 

B0 C0 0 0 0 · · · 0
A1 B1 C1 0 0 · · · 0
0 A2 B2 C2 0 · · · 0
... . . . . . . . . . 0 · · · 0
0 · · · · · · · · · 0 AI BI




fn0
fn1
fn2
...
fnI

 =


D0

D1

D2
...
DI


After inverting this matrix, the expression for fn at all space points is obtained.

Repeating the procedure several times it is possible to determine f for all grid points.
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3.5 Force Field and 1D comparison
The purpose of this section is to compare the Force Field and the 1D solutions and

see how they differ. To do so, the data from the AMS-01 flight and from IMP 1987 and
1997 was used.

The GCR LIS fluxes used were the ones from Webber and Lockwood [2001] [37]

JLIS(H) =
21.1(103T )−2.8

1 + 5.85(103T )−1.22 + 1.18(103T )−2.54
(3.49)

JLIS(He) =
1.075(103T )−2.8

1 + 3.91(103T )−1.09 + 0.9(103T )−2.54
(3.50)

in particles/m2.sr.s.MeV and T is the kinetic energy in GeV.
The value used for the boundary of the Heliosphere was rH = 90 AU, the diffusion

coefficient and the solar wind radial velocity were set to

Table 3.1: Solar Wind and diffusion coefficient for AMS-01, IMP87, IMP97
Variable AMS-02 IMP87 IMP97
k0[cm2/s] 3.6 × 1022 4.38 × 1022 4.38 × 1022

V0[km/s] 430 400 400

For the 1D solution, the Solar Wind velocity expression used was

V (r) = V0(1− e−13r) (3.51)

which is in accord with experimental measurements of the Solar Wind velocity [49]
For the IMP87 and IMP97, the fluxes are calculated at 1,20,60 and 80 AU (fig. 5.7),

and are offset by factors of
√

10, so that the lines can be clearly visible. The first aspect
to notice in fig. 5.7 is that, both the 1D and the Force Field solutions (although not
considering drift terms), can fit reasonably well experimental data in solar minimum
periods with opposite drift states. It is also evident that the Force Field solution di-
verges from the 1D solution at low energies (this phenomenon gets worse as the distance
increases), proving that the energy losses estimated by the Solar modulation parameter
are not the true adiabatic losses.

Another quantity that was also calculated for the two solutions was the radial in-
tensity gradient, defined as

gr =
1

JT

∂JT
∂r

(3.52)

Figures 3.8(a) and 3.8(b) show averages of gr

gr ≈
ln (JT1/JT2)

r2 − r1

(3.53)
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for four different space intervals: [1;20] AU, [20;40] AU, [40;60] AU and [60;80] AU. The
quantity gr gives information about flux variations with distance in different regions.
The full line solutions in figure 3.8 indicate the well-known behavior that the gradients
peak between 20 and 200 MeV, and that they recede to zero at low energies due to
adiabatic energy losses. The dashed lines are the force field gradients, which show
again that the true adiabatic energy losses are not being taken into account.

Figure 3.9 shows that it is difficult to distinguish between the Force Field and 1D
numerical solution in the rigidity region covered by the AMS-01 experiment. As the
AMS-02 detector operates in approximately the same rigidity region as AMS-01, it will
also be hard to see any discrepancies between the Force Field and 1D solutions using
the AMS-02 data, even with the huge amount of statistics.

The Force Field and the 1D are both approximate solutions of the transport equa-
tion. They assume that there is no dependence of the flux on the θ and φ coordinates,
disregarding all the effects related, for instance, with the rotation of the Sun. This of
course leads to the neglection of the HMF and the HCS structures and the drift terms.

For this reason, in these kind of models, it only makes sense to study variations on
a monthly basis (approximately over one Solar rotation ∼ 27 days).
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(a)

(b)

Figure 3.7: a) Proton fluxes at various distances from the Sun . b) Helium fluxes at various
distances from the Sun. IMP data are from Goddard Medium Energy Detector (MED) (P.I.:
R. E. McGuire).
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(a)

(b)

Figure 3.8: a) Radial Intensity Gradients for Protons at various distances from the Sun . b)
Radial Intensity Gradients for Helium at various distances from the Sun. Experimental Data
from IMP 1987 and 1997
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Figure 3.9: a) Proton and Helium calculated with Force Field and 1D . b) Ratio p/He
calculated with Force Field and 1D. Experimental points from AMS-01 [34] [35]
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3.6 The 2D numerical solution
If in equation 3.1, azimuthal symmetry is assumed (∂/∂φ=0), the new expression

for the TPE is

∂f

∂t
=

diffusion︷ ︸︸ ︷
1

r2

∂

∂r
(r2Krr)

∂f

∂r
+

1

r2 sin θ

∂

∂θ
(Kθθ sin θ)

∂f

∂θ
(3.54)

+

diffusion︷ ︸︸ ︷
Krr

∂2f

∂r2
+
Kθθ

r2

∂2f

∂θ2
+

drifts︷ ︸︸ ︷
1

r2

∂

∂r
(rKrθ)

∂f

∂θ
+

1

r sin θ

∂

∂θ
(Kθr sin θ)

∂f

∂r

−

convection︷ ︸︸ ︷
V
∂f

∂r
+

adiabatic losses︷ ︸︸ ︷
1

3r2

1

∂r
(r2V )

∂f

∂ ln p

The drift terms can be written in terms of the drift velocities ~vdr = ∇× (KAeB)

〈vdr〉r = −sign(qA)
1

r sin θ

∂

∂θ
(Kθr sin θ) (3.55)

〈vdr〉θ = −sign(qA)
1

r2

∂

∂r
(rKrθ) (3.56)

where sign(qA) determines the drift direction of the particle in the heliosphere (q is
the charge and A is the magnetic field polarity).

The diffusion coefficients Krr = K‖ cos2 Ψ +K⊥ sin2 Ψ and Kθθ = K⊥ ( as deduced
in the transformation 3.15) are just the diagonal elements of the diffusion tensor, where
K⊥ and K‖ represent, respectively, the diffusion coefficients perpendicular and parallel
to the average HMF. Ψ is the angle between the radial and mean HMF directions.
The coefficients Krθ and Kθr are the off diagonal elements and can be expressed as
Krθ = −Kθr = −KA sin Ψ, where KA is the antisymmetric element of the diffusion
tensor, describing the effects of particle gradient and curvature drifts in the large-scale
HMF.

The drift velocity, as mentioned in equation 3.8 is

~vdr = ∇× (KAeB[1− 2H(θ − θ′)]) (3.57)
= ∇× (KAeB)[1− 2H(θ − θ′)] + 2δ(θ − θ′)KAeB ×∇(θ − θ′)
= ~vD[1− 2H(θ − θ′)] + ~vHCSδ(θ − θ′)

where [1 − 2H(θ − θ′)] was introduced to take into account the fact that the field
changes polarity when crossing the HCS, eB is the HMF direction and θ′ is just the
HCS expression (equation 2.25).

The first term in the last equation describes the gradient and curvature drifts, which
are caused by the global magnetic field, and the second term describes the drifts along
the HCS. A particle in an external magnetic field ~B gyrates in a plane perpendicular
to the field direction. If a particle is moving within two gyroradii from HCS it will be
affected by it. The effect is showed in figure 3.10, for a flat HCS.
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Figure 3.10: An illustration of the trajectory of a particle along a flat HCS.The wavy curves
represent the trajectory of the particle.

In order to separate the effect of the HCS drift from other drift effects at a certain
latitude, it is necessary to define the region swept out by particles drifting along the
HCS in one solar rotation. This region (figure 3.11 ) is known as the HCS region and
is defined by the latitude θ such that,

π

2
− α−∆θHCS < θ <

π

2
+ α + ∆θHCS (3.58)

where α is the tilt angle and ∆θHCS is the angle spanned by two gyroradii of a particle
at a radial distance r from the Sun, i.e.∆θHCS = sin−1(rg/r), or ∆θHCS = 2rg/r when
the gyroradius rg << r.

Figure 3.11: Scheme of the HCS region.

The expressions ~vD = ∇×(KAeB) and ~vHCS = 2KAeB×∇(θ−θ′), can be computed,
since KA, eB and θ′ are known. The projections of ~vD and ~vHCS in the meridional plane
are shown in figure 3.12, for positive charges and for A > 0 and A < 0.
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Figure 3.12: The projections of drift directions onto the meridional plane for positively-
charged particles in a Parker HMF during an A>0 and A<0 epoch [47].

Structures like the HCS depend on r, θ and φ, which means they are three di-
mensional. Potgieter and Moraal [48] showed that a way of including the HCS drift
effects in a 2D model was to assume an antisymmetric diffusion coefficient of the form
K ′A = KA F (θ), with

F (θ) =

{
(1/a) arctan(1− 2θ/π) tan a if c < π/2
1− 2H[θ − π/2] if c = π/2

(3.59)

a = arcos
( π

2c
− 1
)

(3.60)

c =
π

2
− sin(α + ∆θHCS)

2
(3.61)

The resulting drift velocity in a 2D model is

~vdr = F (θ)∇× (KAeB) +
∂F

∂θ

KA

r
eθ × eB (3.62)

The method that will be used to solve equation 3.54 is the Alternating Direction Im-
plicit (ADI) method, in particular the Peaceman-Rachford scheme. The ADI method
is an extension of the CN, used to solve the 1D TPE. It preserves the trigonal nature of
the matrices to be inverted by employing an operator splitting technique that produces
two independent differential equations.

In this particular case the equation has the form (assuming the steady state condi-
tion ∂f/∂t = 0)

∂f

∂ ln p
+ Lrf + Lθf = 0 (3.63)
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with

Lr = a1(r, θ)
∂

∂r
+ a2(r, θ)

∂

∂r2
(3.64)

Lθ = b1(r, θ)
∂

∂θ
+ b2(r, θ)

∂

∂θ2
(3.65)

Lθ and Lr are differential operators. In the 1D case, the way to solve the equation was
to transform the domain in a rectangular grid (r, ln p) and use finite differences. The
problem is that in the 2D case there are three variables r ∈ [ln pmin, ln pmax], r ∈ [r0, rH ]
and θ ∈ [0, π/2] in the equation. What the ADI does is to solve the equation in two
steps.

1.
fn − fn−1/2

(∆ ln p)/2
+ Lrf

n−1/2 + Lθf
n = 0 (3.66)

2.
fn−1/2 − fn−1

(∆ ln p)/2
+ Lrf

n−1/2 + Lθf
n−1 = 0

where Lr and Lθ are now the discretized operators Lθ and Lr, i. e., written using finite
differences. The first step is used to solve implicitly in r for all θ, in order to obtain
a solution at a half momentum step fn−1/2, using fn as an initial condition. A second
solution is now obtained by solving implicitly in θ for all r to get the solution at a full
momentum step fn−1, by using the previously calculated solution at half a momentum
step fn−1/2. That is why it is called an alternating method, because in the first step
the equation is solved implicitly for r and in the second step is solved implicitly for θ.

Just like in the 1D case, it is important to assure that the boundary conditions are
always being respected. In the 2D model, besides the boundary conditions at r = r0

and r = rH , there are two additional ones:

∂f

∂θ

∣∣∣
θ=0

=
∂f

∂θ

∣∣∣
θ=π/2

= 0 (3.67)

which result from the fact that the heliosphere is assumed to be symmetrical about
the poles and the equatorial plane. Repeating the procedure in 3.66, it is possible to
calculate f for all θ and r.

As can be easily seen, the complexity changes abruptly when considering two dimen-
sions. The diffusion is now treated as a complex tensor, with symmetric components,
accounting for the perpendicular and parallel diffusion, and antisymmetric components,
responsible for the drifts. Some of these quantities, like K⊥ are still not completely un-
derstood, which means that a lot of work is still needed to fully comprehend its effects
on the flux. The purpose of this section was not to study in detail the 2D solution,
but rather to give an outline on how to solve it. There are a lot of parameters that
enter the 2D equation, which have to be carefully analyzed in order to understand its
effects. The Peaceman-Rachford scheme, described above, was implemented using a
C++ classes framework (integrated in the analysis sofware chain - LxSoft).
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4
The AMS-02 Experiment

Alpha Magnetic Spectrometer (AMS) is an international collaboration involving
hundreds of researchers from 56 institutes and 16 countries. The main goal of the
collaboration was to take a particle spectrometer to space.

This task was divided in two parts: the first one (AMS-01) took place in June
1998, when a preliminary detector flew aboard the Space Shuttle with the objective of
testing the AMS concept; the second one (AMS-02) occurred in May 2011, when the
final detector was installed aboard the International Space Station (ISS) , where it is
expected to operate continuously between 10 to 18 years.

Figure 4.1: The AMS-02 detector aboard the ISS [39].
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4.1 Scientific goals of AMS-02
The physics aims of AMS-02 are:

• Measurement of cosmic ray spectra from a few hundred MeV up to 1 TeV, in
particular:

– Hydrogen, helium and beryllium isotopes (D/p,3He/4He,10Be/9Be);
– Secondary to primary spectrum (B/C, sub-Fe/Fe);
– Cosmic gamma-ray spectrum;

• Search for indirect signals of non-baryonic dark-matter through the detection of
annihilation products appearing as anomalies of the cosmic-ray spectra (e+, p̄, γ
and D̄);

• Search for cosmological antimatter through the detection of antinuclei with |Z|>2;

4.2 Detector Description
AMS-02 is the first large magnetic spectrometer in space, and it is able to measure,

with unprecedented accuracy, fluxes of CRs above Earth’s atmosphere. The spectrom-
eter is composed of several subdetectors:

• a Transition Radiation Detector (TRD)

• a Time-of-Flight (TOF) detector

• a Silicon Tracker

• a set of Anticoincidence Counters (ACC)

• a Ring Imaging Cerenkov (RICH) detector

• an Electromagnetic Calorimeter (ECAL).

Figure 4.2: The AMS-02 detector [39].
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The permanent magnet
The AMS-02 permanent magnet was already used in the AMS-01 flight and it is a

cylinder of 1m diameter and 1m height, made of 6000 Neodimium-Iron-Boron blocks.
It creates a magnetic field of 0.15 T (bending power is BL2 =0.15Tm2), uniform along
the x axis, and with negligible dipole moment.

Transition Radiation Detector (TRD)
The TRD is the first subdetector that the majority of the particles face when en-

tering the spectrometer. The working principle of the TRD is based on the emission
of transition radiation by the particles that cross it.

Transition radiation is a particular type of electromagnetic radiation in the X-ray
region (1 - 50 KeV), emmited when a charged particle crosses the boundary between
two media with different dielectric constants. The energy of the transition radiation
photons is proportional to γ = E/m, and has a threshold of γ ≈ 500, making low mass
particles, such as positrons or electrons, likely emitters of transition radiation energy.
This allows a separation between low mass and high mass particles (for protons with
momentum between 10 - 300 GeV the rejection factor is 102 - 103).

Since the emission probability of a single interface is very low (∼ 10−2), the subde-
tector is made in a multilayer structure (20 layers supported by an octogonal pyramidal
structure),allowing for hundreds of transitions when a particle crosses the TRD. The
building blocks of the 20 layers are 328 modules, each having a fleece radiator with
thickness of 20 mm and straw tube proportional wire chambers filled with a Xe/CO2

(80%:20%) mixture.

Figure 4.3: TRD module.

Time-of-Flight (TOF)
The TOF is the subdetector responsible for fast triggering the particles that reach

the detector, distinguishing between upward and downward particles, measuring the
velocity (σβ=3% for protons), and estimating the value of the charge up to Z ≈ 20.
The TOF system consists of four planes with 8,8,10 and 8 plastic scintillator counters
each. The planes are roughly circular with 12 cm wide scintillator paddles, one pair
of planes above the magnet called the upper TOF and the other below the magnet
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TOF, called the lower TOF.The quality of the measurements is increased by having
perpendicular paddle orientations in both pairs of planes.

Figure 4.4: TOF planes.

Silicon Tracker
The Silicon Tracker is responsible for making measurements of particle positions with

a precision of ∼ 10µm along the bending plane (yOz), and ∼ 30µm on the transverse
direction. By finding the trajectory of the particle inside the magnetic cavity, it is
possible to calculate the particle rigidity with a precision of 2% at a few GV (for
protons, the Maximum Detectable Rigidity (MDR) is around 1.3 TeV ). The silicon
tracker is also capable of measuring the charge of the particle up to Z ≈ 26.

The tracking system is composed of 9 layers: 1 above the TRD, 1 above the ECAL,
and the other set of 7 in the central region (inner tracker). The layers are made of
∼ 2500 double-sided silicon microship sensors arranged on 192 ladders.

Figure 4.5: Tracker plane.

The Anti-Coincidence Counters (ACC)
The ACC are made of scintillators, surrounding the silicon tracker, and fitted tightly

inside the inner bore of the detector’s magnet. The purpose of the ACC is to detect
particles entering the Tracker laterally, outside the main acceptance, which may create
signals in the detector leading to bad event reconstruction.
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Figure 4.6: ACC view.

The Ring Imaging Cerenkov Detector (RICH)
The RICH is responsible for measuring, with high precision, the velocity of particles

that emmit a Cerenkov cone when transversing it. The opening angle of the cone
depends on the velocity and on the refractive index of the material. By measuring the
number of emitted photons, it is possible to compute the charge of the particle.

It consists of a radiator plane, a conical mirror and a photon detection plane. The
radiator has two regions: the outer region, made of thick aerogel tiles (n ≈ 1.03− 1.05)
and the central region, composed of thick sodium fluoride (NaF) radiator (n ≈ 1.33).
The detector plane is made of 680 4 × 4-multi-anode Photomultipliers (PMT) (gain
106 at 800 V).

Figure 4.7: RICH exploded view.
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The Electromagnetic Calorimeter (ECAL)
The ECAL, placed at the bottom of the detector, is a fine grained lead-scintillating

fiber sampling calorimeter,with an active area of 648 × 648 mm2 and a thickness of
166.5 mm. It provides an accurate 3-D imaging of the longitudinal and lateral shower
development and a precise value of the shower energy. Additionally, It serves as a
powerful tool to distinguish hadrons from electrons or positrons, as the type of shower
developed inside the detector is completely different.

It is also worth noting that the ECAL is able to detect gamma-rays, either by
measuring the interaction of the photon inside the detector, or through the identification
of a particle-antiparticle pair produced in the matter preceding it.

The AMICA Star Tracker
The Astro Mapper for Instrument Check of Attitude (AMICA) consists of a pair

of small optical telescopes instaled near the Silicon Tracker structure. It serves the
purpose of measuring the orientation of the detector, allowing for the identification of
γ ray sources .

4.3 AMS in the International Space Station
Since 19th May 2011, AMS is orbiting around Earth every 90 minutes, at an altitude

of around 400 Km and is collecting around 40 million of events a day. When a particle
triggers the AMS detector, a signal is sent to all sub-detectors and its raw data is
gathered in JMDC, the main AMS board computer. Framed data is then downloaded
to the AMS laptop computer and is sent to Earth through the High Rate Data Link
(HDRL), which uses satellites ku-band. At Earth, data is received at the Marshall
Space Center and redirected to CERN where it is stored on hard drives and processed.
More than 2 1010 events have been processed up to the present day. As output of the
event processing, root tuples are produced, storing the reconstructed information event
by event. In addition, detector calibration is also stored.

The detector is operated and its conditions are continuously monitored from a Pay-
load Operation and Scientific Center installed at CERN, in Geneva. A team of people
performs daily 24h shifts, in order to monitor the operative conditions of the different
subdetectors (temperature, TRD gas pressure, noise, power consumption).

Subdetector Size in bytes
Tracker 1100
RICH 250
TOF 500
ECAL 300
TRD 600

Total ∼ 2.8 KB

a) b)

Figure 4.8: a) Average event size in bytes. b) AMS POCC at CERN
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4.4 The analysis software chain
The root tuples with the event information are stored at CERN, using the CAS-

TOR system. To analyze the information stored in the root tuples, a set of AMS C++
classes developed by the collaboration are used. These classes allow to read every de-
tector information before and after data reconstruction. In addition, the Laboratório
de Instrumentação e Física de Partículas (LIP) group together with the french labora-
tory of Grenoble (LPSC) and later on Annecy (LAPP) developed a software structure,
named LxSoft, where additional user C++ classes were implemented. This classes
serve the purpose of making the analysis of the root tuples easier, creates a shareable
set of analysis tools and implements specific particle and detector selections.

The development of the LxSoft software tool, followed the following ideas:

• simplify the event analysis

• be able to access data on different locations: CERN castor data center, Lyon data
center and local data

• implement solar modulation models: force- field, numerical solutions for 1D and
2D

• implement particle reconstruction and identification, specifically to different sub-
detectors

• calculate the exposure time

• back-trace particles in the geomagnetic field

• implement transformations between different coordinate systems

• determine the geomagnetic cut-off and geomagnetic coordinates
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5
Solar Modulation effects on AMS-02
proton fluxes

The first part of this chapter describe all the procedures related to the calculation
of the primary proton flux. Protons correspond to approximately 90% of the 40 million
events that reach the AMS-02 detector every day, and so, contamination from other
species is not a major problem. Given that , all the particle selection procedures are
more focused on having a high efficiency, rather than a perfectly clean sample.

The second part of this chapter is about the monitorization of Solar Events,a periodic
survey of fluxes variations and the application of a Solar modulation model. The results
are also compared with the NM network data.

5.1 Measuring Proton Fluxes
The flux of particles that reaches the detector are influenced by two physical phe-

nomena: Solar Modulation and the Geomagnetic Cut-off. The goal is to select primary
protons, i.e, protons with rigidity above the cut-off rigidity.

The flux of primary protons can be expressed by:

Jp(R) =
1

Acc(R)∆t(R)
· ∆Np(R)

∆R
(5.1)

The various terms are:

• ∆Np - The number of primary protons between [R;R+∆R].

• ∆R - The width of the rigidity bin.

• ∆t - The exposure time of the detector between [R;R+∆R].

• Acc - The Acceptance of the detector as a function of rigidity (which includes the
geometrical acceptance and the selection efficiencies)
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5.1.1 Proton Selection

The main goal of the selection was to distinguish protons from the other particles
that constitute the flux of cosmic rays, mainly heliums (11%) and electrons (2%) with-
out reducing too much the proton sample, i.e., with high efficiency.

As seen in Chapter 4 some of the AMS-02 subdetectors, such as the TRD and the
ECAL, were built to separate e+/e− from p/p̄. However, there are some characteristics
of these subdetectors, such as the low geometrical acceptance of the ECAL, that reduce
dramatically the selection efficiencies, i.e, the number of protons in the sample, and so
these detectors will not be used in the selection.

The proton selection was divided in two parts: general data selection and par-
ticle selection. The general data selection assured that the events analyzed passed
the quality cuts necessary for a proper particle identification (analyzing the rigidity
and velocity measurements). The particle selection was focused in selecting a specific
particle, in this case the proton.

The data selection cuts (DS) were applied as follows:

DS1 One particle and one track per event.
The aim of this cut was to exclude events with multiple particles transversing the
detector.

DS2 One hit with X and Y coordinates per pair of inner Tracker planes (3/4, 5/6 and
7/8).
This assures a minimal number of hits required for a good measurement of the
rigidity in the Tracker. The rigidity is calculated interpolating the track.

DS3 χ2
y < 10.

Tracker track quality in the bending direction.

DS4 At least one hit on every TOF plane (4/4)

DS5 Matching between the Tracker track and the TOF hits position.
The fitted track was extrapolated to the TOF and the compatibility was checked
by computing the distance between the trace and the TOF hits position.

DS6 χ2
β < 4.
βTOF quality

DS7 β > 0 .
This cut rejects all particles that entered the detector from the bottom position.
The majority of these particles are secondaries, created below the detector via
interactions of the primary particle with the atmosphere.
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Figure 5.1: a) Normalized χ2 in the bending direction. b) Distribution of the relative differ-
ences between TOF and TRK reconstructed charges. c) Distribution of longitudinal distance
between TOF hits position and track, for bar 1 of layer 3. d) χ2

β distribution. All these plots
correspond to one day of data acquisition.

The Particle Selection cuts (PS) were based on the charge measurements given by
the TOF and Tracker, and on the rigidity measurements given by the Tracker. In this
case, for proton selection, the cuts were:

PS1 Positive Rigidity.
Choosing particles with positive charge.

PS2 Charge Compatibility between TOF and Tracker (relative difference must be lower
than 30%)

PS3 Q=1.
Choosing particles with absolute charge equal to 1.
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Table 5.1: Cuts efficiencies
Cut average efficiency Description
DS1 50% Npart = 1 and NTRK = 1
DS2 41% Number of track hits
DS3 39% Track Quality
DS4 37% TOF hits
DS5 30% Matching Tracker-TOF
DS6 28% Velocity quality
DS7 26% Downward particles
PS1 24% Positive rigidity
PS2 20% Charge compatibility Tracker-TOF
PS3 16% Charge = 1

After these cuts, the sample was mainly constituted by particles with positive unit
charge, but it was not a primary proton sample. In order to accomplish that, all the
particles with rigidity below the cut-off rigidity were rejected.

Yet, the rejection of particles below the cut-off must be dealt with some precau-
tions. As showed in section 2.5.4, the Stöermer cut-off rigidity depends not only on
the detector position, but also on the direction of the particle. However, even if the
particles direction, rigidity (R) and cut-off (RCUT ) are known, the inequality that tells
if the particle is primary is not as simple as

R > RCUT (5.2)

This is due to the fact that Earth’s magnetic field has a more complex shape than a
dipole 1, and so the formula 2.67 is not exact . As a consequence, for each position and
incoming direction, a penumbra region is created. This penumbra region is bounded by
two rigidity limits: RU , above which all trajectories of the galactic particle are allowed,
and a lower rigidity RL, below which no trajectory of the galactic particle is allowed;
the Stöermer cut-off rigidity RCUT is a value between RL and RU . Figure 5.2 shows this
concept for an arbitrary position and incoming direction of the galactic particle. Using
numerical methods to solve the motion equation in the magnetic field, it is possible to
back-trace a measured particle (of known rigidity and incoming direction). As can be
seen there are regions below RCUT , where the particle is galactic, and regions above the
RCUT is not galactic, which show the limitations of the Stöermer’s formula.

1The Earth’s magnetic field is usually expressed as a truncated series expansion whose coefficients
are periodically measured - the International Geomagnetic Reference Field (IGRF)
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Figure 5.2: Schematic representation of the penumbra region [43] [51].

Additionally, Stöermer’s formula shows that two particles, with the same rigidity,
can be classified differently (primary or secondary), depending on their direction. So
being, for each position of the detector in space, equation 2.67 says that there is not an
unique cut-off rigidity but rather a rigidity interval [Rmin

CUT ;Rmax
CUT ].

Figure 5.3: Schematic representation of the different regions created by the geomagnetic
cut-off.

In figure 5.3, all particles falling into zone 1 are secondaries,whereas all particles
inside zone 3 are primaries. However, for particles with rigidities between [Rmin

CUT ;Rmax
CUT ]
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the distinction is not so obvious, because the cut-off depends on the direction.
Since between [Rmin

CUT ;Rmax
CUT ] not all trajectories are allowed, the galactic protons are

not isotropic in that region. It was therefore necessary to avoid it and only particles with
rigidities above Rmax

CUT , in a zone of rigidities where all detected particles are galactic,
were selected. In order to stay clear from any penumbra effects, a "safe margin" was
adopted and the decision about the origin of the particle was based on the inequality

R > C ·Rmax
CUT (5.3)

with C=1.3
Finally, a mass cut was applied to exclude particles with Q=1, other than protons,

that were contaminating the sample. Figure 5.4 shows the mass plot, before and after
the band cut. This cut was only effective for low energies where the 1/β curves of the
particles are considerably different.

(a) (b)

Figure 5.4: a)Inverse β versus momentum before the mass cut . b)Inverse β versus momentum
after the mass cut .

5.1.2 Exposure Time and Livetime

The computation of the flux requires, as seen before, the calculation of the exposure
time for each rigidity bin, i.e., the time the detector is "able" to measure particles
in a certain rigidity interval. For instance, near the equator, the cut-off rigidity is
around a few tens of GV, which doesn’t allow particles to fill up low rigidity bins. As
a consequence, the time is counted only for bins above the cut-off.

Using the same "safe" factor - C, the bin time is counted, if and only if

Rmin
bin > C ·Rmax

CUT (5.4)

where Rmin
bin is the lower boundary of the rigidity bin.

Another important aspect regarding time counting is the livetime. By definition,
dead time is the time required by the electronics and acquisition system of the apparatus
to register each event. During this time (200 µs for the AMS-02 detector), the apparatus
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Figure 5.5: Schematic representation of exposure time counting.
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Figure 5.6: Exposure Time during one day of acquisition.For rigidities above ≈ 50 GV, the
detector is always able to count times.

cannot register any particle reaching it. The payback is that the rate at which the events
are reaching the detector, R0, is not equal to the rate at which the events are being
registered - R. Therefore, the number of events in a certain rigidity bin i must be
corrected by the livetime

∆Ni = R0 ·∆ti =
R

L
·∆ti (5.5)

where

L =
R

R0

(5.6)

is the livetime.
If the rates are very high, the livetime can be excessively low, and the detector

"loses" a lot of events during the event processing time. In AMS-02, the highest rates
(≈ 1500 Hz) occur at the poles and when the detector passes through the South Atlantic
Anomaly (SAA)2. Figure 5.7(a) shows the livetime increasing with the geomagnetic
latitude. All the events having livetimes lower than 0.65 were rejected. Figure 5.7(b)
shows the orbit of the detector during one day and excluding the SAA.

2The SAA is the area where the Earth’s magnetic field has its lowest value, allowing that the
inner Van Allen radiation belt comes closely to the Earth’s surface. The effect is caused by the
non-concentricity of the Earth’s dipole.
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Figure 5.7: a)Livetime versus geomagnetic latitude for 1 day of events . b) Orbits for 1 day,
excluding the SAA.

5.1.3 Acceptance

The detector’s acceptance was computed using a Monte Carlo proton sample. The
acceptance can be grouped in one single expression, which includes the generation
acceptance and the efficiencies

Acc(R) = Acc0 · εtrigger(R) · εSel(R) (5.7)

where Acc0 is the generation acceptance, εtrigger(R) is the trigger efficiency and εSel(R)
is the selection efficiency.

Each set of selections for the flux sample under study, also called cuts, must be
evaluated over a subset of events, representative of the galactic flux aiming to measure.
This subset is called efficiency sample.

The efficiency of a generic set of selections is defined as:

ε(R) =
N(R)

N0(R)
(5.8)

where N0(R) is the number of events distributed in rigidity in the efficiency sample,
and N(R) is the subset of events that passed the cuts.

The trigger efficiency is defined as the number of protons that passed the AMS-02
Level 1 trigger divided by number of generated protons. The Level 1 proton trigger
consists of two conditions :

• The particle must cross all the 4 TOF planes.

• No ACC signal.
This rejects events having a particle interaction occurring inside the inner Tracker,
which leads to a deficient rigidity measurement.

The selection efficiency is the ratio of particles that, having passed the trigger, passed
all the data selection and particle selection cuts.
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In the Monte Carlo, the detector is simulated inside a cube of (3.9)3 m3. The events
are generated isotropically on the faces of the cube, and distributed uniformly in log p.
The generation acceptance in each face is:

Acc0 =

∫
S

dS⊥

∫
Ω

dΩ = S0

∫
cosθ

∫
φ

cos θ d cos θdφ (5.9)

Since the events are generated with a random 0<φ<2π and cos θmin < cos θ < cosπ,
the last expression is just

Acc0 = πS0(1− cos2 θmin) (5.10)

Figure 5.8: Schematic representation of the Monte Carlo generation method on the top face
of the cube.

In this work, the acceptance was calculated using a sample of 6 × 106 protons,
generated isotropically on the top face, and uniformly distributed in log p between 0.5
GV and 200 GV.

The acceptance after trigger and after selection, i.e,

AccTrig(R) = Acc0 · εtrigger(R) (5.11)
Acc(R) = Acc0 · εtrigger(R) · εSel(R) (5.12)

are ploted in figure 5.9.

Figure 5.9: Selection and Trigger Acceptances.
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5.1.4 Results

All the steps towards the determination of the flux are now completed, and so it
is possible to calculate the AMS-02 primary proton flux. The AMS-02 computed flux
is displayed in 5.10 together with data from several other experiments. Since these
experiments were performed under different Solar activity conditions, the low rigidity
region of the flux is substantially different among them. The AMS-02 flux is "folded",
i.e, the rigidity distribution of selected protons was not corrected for the effects of
rigidity displacement due to the finite spectrometer resolution. For events above 50 GV,
the rigidity uncertainties can result in a wrong assignment of the particle’s rigidity. As
a result, the slope of the proton flux, for rigidities above 50 GV, can be slightly affected.
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Figure 5.10: Proton flux from several experiments.

5.2 Solar effects on fluxes
This section serves the purpose of monitoring and studying the effects of the Sun on

the AMS-02 primary proton flux, both the sporadic, caused by Solar Flares or CME,
and the long term Solar modulation. This will be done by integrating the proton flux at
low rigidities (2 to 30 GV) and high rigidities (30 - 100 GV) and studying its variations.

5.2.1 Observation of Solar Events

As described in Chapter 2, SCR or SEP, which are originated due to Solar phe-
nomena, constitute a percentage of the total cosmic ray flux reaching Earth. The origin
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of these Solar particles is normally associated with events like Solar flares and CME,
which also influence the flux of GCR.

Solar Flares are huge explosions on Sun’s surface, usually occuring near sunspots.
When the tangled magnetic fields, coming out of the surface, reach a "breaking point",
like a rubber band that snaps when wound too tight, huge bursts of energy are released
as the field lines reconnect. This can lead to the formation of a Solar flare, as depicted
in figure 5.11.

In the magnetic reconnection process, a huge amount of magnetic energy is rapidly
released and transformed to thermal and kinetic energy of the particles. Reconnection
can accelerate particles to a high energy (few GeV) within a short time, as required by
the very impulsive SEP events. Ejected particles may either remain trapped, or escape
into the interplanetary space, if the upper magnetic configuration becomes open.

The particles emitted during these kind of events are mainly photons (γ-rays and
X-rays), protons and electrons.

Figure 5.11: Schematic representation of the formation of a Solar flare (Credit: NSF).

Solar flares can be classified by their brightness, i. e., the peak flux (in watts per
square meter, W/m2) of 100 to 800 picometer X-rays.

Classification peak flux (W/m2)
X ≥ 10−4

M 10−5 - 10−4

C 10−6 - 10−5

B 10−7 - 10−6

A ≤ 10−7

Table 5.2: Solar flares Classification

Within a class there is a linear scale from 1 to 9 (apart from X), so an M2 flare is
twice as powerful as an M1 flare.
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CME are quite common during periods of high Solar Activity and are characterized
by being spatially larger and temporarily slower than Solar flares. During a CME, huge
quantities of plasma, initially trapped in closed coronal magnetic field lines, are ejected
into interplanetary space (involving typically 1012 to 1013 kg of mass, and kinetic ener-
gies of 1024 to 1025 J).

The disruption of a large, stable, magnetically closed structure still poses fundamen-
tal questions for the MHD theory. However, it is probable that large-scale magnetic
reconnection is involved in the formation of a CME. It is also worth noting that, al-
though flares and CME are often connected, this is not always true.

A CME often leads to a huge hot plasmoid (a closed magnetic structure) moving
with a high speed in the interplanetary space, and to an interplanetary shock located
at the front edge of the plasmoid (the shock can also accelerate particles by Fermi-
acceleration).

Thus, a Solar flare or a CME can generate a shock that propagates through the
Heliosphere. This shock will reduce the flux of GCR that reaches Earth, originating
what is called a Forbush decrease [44]. The causes of the Forbush decrease are still not
completely understood, but it is believed that the shock increases the magnetic field
as it passes through the Heliosphere, creating an effective barrier for the cosmic ray
particles. Usually, the shock front also "collects" and accelerates particles, which are
seen as a small intensification of the flux before the Forbush decrease.

In order to monitor variations, the AMS-02 proton flux was integrated between [2 ;
30 ] GV, which corresponds to the rigidity zone where the flux is sensible to these kind
of effects.The Oulu NM’s counting rates were also analyzed.

The most intense Solar flares between 8/2011 and 4/2012 are listed in table 5.3.

Table 5.3: Solar flares’ list between 8/2011 and 4/2012 [45]
Classification Date Sunspot Region

X6.9 August 9 2011 1263
X5.4 March 7 2012 1429
X2.1 September 6 2011 1283
X1.9 November 3 2011 1339
X1.9 September 24 2011 1302
X1.8 September 7 2011 1283
X1.7 January 27 2012 1402
X1.4 September 22 2011 1302
X1.3 March 7 2012 1429
X1.1 March 4 2012 1429
M9.3 August 4 2011 1261
M8.7 January 23 2012 1402
M8.4 March 10 2012 1429
M7.9 March 13 2012 1429

Note that the majority of these Solar flares were accompanied by a CME.
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Figure 5.12: a) Integrated proton flux [2 ; 30] GV and Oulu NM’s rates in a daily basis (days
of the month in the X-axis), for the months with the most powerful Solar flares (August 2011
September 2011 and March 2012). The plots reveal the expected reduction of the low energy
proton flux during a flare. Additionally, they show a strong temporal correlation between the
variation of the integrated flux and the number of neutrons reaching Earth’s surface. b) This
figure shows the several phases of 7th March flare. The first one is the arrival of the SEP
protons, which were accelerated in the shock front, and will increase the proton flux at low
rigidities. After the passage of the shock front, there is a sudden decrease in the flux due to
the enhancement of the magnetic field.Finally, the flux takes almost 20 days to return to its
original form.
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5.2.2 Stability of the fluxes

A detailed study of the daily integrated fluxes, at low and high energies, was per-
formed with the AMS-02 proton data. Figure 5.13 shows the integrated fluxes for data
between August 2011 and April 2012. The low energy integrated flux in 5.13(a) reveals
relative flux variations up to ∼ 30%, due to Solar events, whereas the high energy
integrated flux in 5.13(b) is stable within 2% to 3%.

In the first days of December, 6 ladders of the Tracker, measuring the X-coordinate
(non bending coo.) were lost. The ladders caused a drop on the acceptance in the
order of 10%. Monte Carlo proton samples are needed to accurately evaluate the new
acceptance. Since no Monte Carlo was available including this effect, an average correc-
tion was applied to acceptance from December on. Nevertheless, this correction is still
preliminary and more studies need to be done in order to understand all the impacts
of the lost.

(a)

(b)

Figure 5.13: a) Integrated proton flux (low energy) between 8/2011 and 4/2012 . b) Integrated
proton flux (high energy) between 8/2011 and 4/2012.
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5.2.3 Solar modulation parameter analysis

The study of the Solar modulation with AMS-02 proton fluxes was done using the
Force Field approximation. As seen in the last chapter, the Solar modulation parameter
- φSM - depends on the form of the LIS used. The expression for the modulated flux in

particles
m2 s GeV sr is given by 3.26. However, the units of the measured flux are particles

m2 s GV sr
and so, expression 3.26 must be multiplied by the correspondent jacobian, in order to
be dimensionally equivalent. The modulated flux per unit of rigidity is

JR = JT
dT

dR
= A

R

E

E2 −m2

(E + ZφSM)2 −m2
JLIST

(5.13)

where

• R is the particle rigidity in GV

• T is the kinetic energy in GeV

• E is the kinetic energy in GeV

• φSM is the solar modulation parameter in GV

• Z is the charge of the particle

• m is the mass of the particle in GeV

• A is a normalization constant, to account for slight variations in absolute fluxes
between the observations

• JLIST
is the interstellar flux in particles

m2 s GeV sr

The procedure to determine the Solar modulation parameter is to fit the measured
fluxes with expression 5.13. Since the fluxes under study are primary proton fluxes,
some of the parameters were fixed: m = 0.938 GeV and Z = 1.

As previously discussed in section 3.5, the Force Field is a simplistic approximation
that neglects some terms of the transport equation, like the drifts, and fails to estimate
the correct adiabatic losses at low energies. As a consequence, there is a possibility that
the Force Field is not able to reproduce the observed flux at some energy regions where
this terms cannot be neglected and have an important impact on the flux. In order
to detect these kind of effects, a study of the optimal fitting region, i.e., the rigidity
region where the model explains the modulated flux most accurately, was done. The
AMS-02 primary proton fluxes were fitted in a daily basis, between [Rmin; 50] GV using
the expression 5.13. With the daily φSM obtained between August 2011 and December
2011, a monthly average was calculated, and the results are shown in figure 5.14 for
two different LIS models. Note that, all days corresponding to periods of Solar events
(Solar flares and CME) were excluded from this analysis. During these days, the flux
is deformed at low energies, influencing the value of the Solar modulation parameter.
The reason to choose 50 GV and not an higher value, as the upper fitting boundary,
has to do with two issues. The first one is because there is not much interest in fitting
the flux at high rigidities, where the Solar modulation effects are negligible, and the
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event statistics is low. Secondly, because the unfolding of the flux was not performed,
and so, at high rigidities, the flux may be partially distorted.
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Figure 5.14: a) Monthly Solar modulation parameter between 8/2011 and 4/2012 as function
of Rmin, using the Usoskin LIS . b) Monthly Solar modulation parameter between 8/2011 and
4/2012 as function of Rmin, using the Weber and Higbie 2003 LIS.

The plots in 5.14 show a degradation of the Force Field parameter for lower fitting
boundaries below ∼ 6 GV. This effect is independent of the LIS model used. Addi-
tionally, the χ2/ndf of the fit visibly degrades if Rmin < 6 GV (as can be seen in figure
5.15 for a particular day). This can indicate that the flux, for low rigidities, cannot be
properly explained by the Force Field approximation. However, for rigidities above 6
GV, the Force Field is able to reproduce the corresponding modulation. With this in
mind, the calculation of the AMS-02 Solar modulation parameter from August 2011 to
April 2012 was performed using the JUSO5 LIS model (figure 5.16).
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Figure 5.15: Solar modulation parameter derived from the AMS-02 proton fluxes (1st January
2012) for Rmin = 1 GV and Rmin = 6GV using the JUSO5 LIS model. As can be seen, for
Rmin=1 GV, the Force Field cannot fit properly the measured flux.
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Figure 5.16: Smooth Sunspot number between August 2011 and April 2012 (SIDC Bel-
gium).Solar modulation parameter derived from the AMS-02 proton fluxes between August
2011 and April 2012, using the JUSO5 LIS model.

The evolution of the Solar modulation parameter from August 2011 to April 2012
(figure 5.16) does not show a specific trend, even considering that presently we are
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near a Solar maximum and the modulation effects are increasing very rapidly. This
behavior is also present in the Sunspot number from the Solar Influences Data Analysis
Center (SIDC). In fact, as can be seen in figure 2.6 that shows the solar parameter
derived using NM values since 1960, data analysis of 9 months periods are sometimes
insufficient to spot a general increasing or decreasing trend. As a consequence, the
expected increasing tendency will only be visible with some more months of data.

5.2.4 Compatibility with NM

As mentioned before in section 2.5.1, the flux on the top of the atmosphere can be
calculated using the neutron rates, and the specific yield function of each station. Given
this, the Solar modulation parameter can be derived using the NM network data. The
interstellar flux normally used to compute the NM’s Solar modulation parameter is
JUSO5 [46]. As a result, the parameters extracted from the NM and the AMS-02 proton
fluxes are directly comparable, since both used the same LIS model. Unfortunately,
the NM modulation parameters for the year 2012 haven’t yet been published, and the
comparison can only be done with the values between August 2011 and December 2011
[50]. This comparison is shown in figure 5.18, where the dashed line is just a guiding
line of slope equal to one. As can be seen, all the points, except one, have an error
compatible with the line of unity slope. This proves that a relatively good agreement
exists between the Solar modulation parameter derived independently from AMS-02
and NM data.
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Figure 5.17: The plot shows the correlation between the Solar modulation parameter obtained
from AMS-02 and the NM network. The dashed line has slope equal to 1.

Figure 5.18t shows a comparison between the NM φSM from August 2010 to April
2011 and the AMS-02 φSM from August 2011 to April 2012. Although it is not possible
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to see a distinctive increasing tendency in the evolution of the AMS-02 modulation
parameter from August 2011 to April 2012, when compared to the values obtained
from the NM network one year before, from August 2010 to April 2011, an average
increase is observed.
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Figure 5.18: The plot shows a comparison between the NM φSM from August 2010 to April
2011 and the AMS-02 φSM from August 2011 to April 2012.

Additionally, figure 5.19 shows the correlation between the number of neutrons
reaching the Oulu NM station and the low rigidity integrated proton flux, from August
2011 to April 2012. There is an evident correlation between the integrated flux and the
neutron rates. The correlation factor obtained was r = 0.79.
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Figure 5.19: Correlation between the number of neutrons reaching the Oulu NM station and
the low rigidity integrated proton flux. Each point corresponds to 1 day, beginning in August
2011 and ending in April 2012. The total number of points is 183.
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6
Conclusions and Prospects

The installation of AMS on the ISS, on May 2011, constituted a milestone in cosmic
rays physics. For the first time, a long term cosmic ray observatory of intermediate
energies is in permanent operation in the outer space. Due to the large acceptance
of the detector it is possible to collect data at an unprecedented statistical precision,
which associated with the continuous operation, makes it a privileged monitor of any
cosmic ray perturbation event, like a Solar occurrence.

The aim of this thesis was to study the Solar modulation models and the charac-
terization of the effects of the Sun on the AMS-02 data. The first part of this work
was dedicated to study of the several approaches to solve the TPE in the Heliosphere.
Three solutions were derived: the Force Field approximation, which is the most widely
used solution to study the solar modulation effects, 1D and 2D numerical solutions.
All the three solutions depend on the choice of the interstellar flux. The Force Field
and the 1D solution are very similar for energies above 0.1 GeV, which reduces the
chances of distinguishing them using the AMS-02 proton fluxes, since the detector is
not able to measure proton fluxes below 0.1 GeV. The Force Field and the 1D solu-
tion assume a spherically symmetric Heliosphere, disregarding the effects related to the
drifts in the HMF and the HCS. The 2D solution is by far the most complex of the
three and depends on a lot of parameters, when compared with the other two. It also
takes into account the drift effects and perpendicular diffusion, which were neglected
before. Numerical methods were developed to solve the 1D and 2D solutions.

The analysis of AMS-02 data was based on the measurement of the primary proton
fluxes on a daily basis. The proton fluxes were determined using all the available
data, since AMS-02 started collecting data last year, which is approximately 20 billion
events. The variations of the integrated fluxes for low [2;30] GV and high [30;100]
GV rigidities were also systematically studied. As expected, the low energy portion of
the flux is sensible to Solar events, showing 20% to 30% decreases (Forbush decreases)
during the most intense Solar flares. The low energy integrated proton fluxes were
compared with the rate of neutrons that reach Earth’s surface using the data from
the Oulu NM station, and a clear correlation was found. The high energy integrated
fluxes show variations of only 2% to 3%.The Force Field modulation parameter was
calculated using the AMS-02 proton fluxes for all the months, between August 2011
and April 2012. For rigidities below 6 GV the Force Field parameter is consecutively
degraded, as the model seems to have difficulties in fitting the observed flux. However,
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for rigidities above 6 GV, the model seems to fit correctly the data. The Force Field
parameter, calculated using AMS-02 proton fluxes (above 6 GV), was compared with
the one obtained independently from the NM network available data, and a relatively
good agreement was found.

The apparent difficulty of the Force Field to fit the fluxes below 6 GV might be
related to the fact that the model is neglecting terms in the transport equation that
cannot be discarded, such as the drift terms. This might indicate that a more complex
model, such as the 2D model, must be used in order to explain the observed fluxes
below 6 GV. The complete study of the 2D model is out of the scope of this thesis.
There are a lot of parameters that enter the 2D equation, which have to be carefully
analyzed in order to understand its effects. However, the numerical method to solve
the 2D equation, explained in chapter 3, and developed using a C++ classes framework
(integrated in the analysis sofware chain - LxSoft), is available and can serve as a
starting point to a complete data analysis using the 2D model.
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A Magnetic Field frozen in a Plasma

The plasma formed by the solar wind has a high electric conductivity which allows
the Solar magnetic field to be "frozen" and transported throughout the heliosphere.
The goal of this section is to demonstrate how this mechanism takes place.

Considering a volume of plasma with surface area S, moving with velocity V, there
are two frames

• O’ - that is moving with the plasma

• O - that is fixed

Ohm’s law in O’ is just

~J ′ = σ ~E ′ (1)

Using Lorentz transformations, it becomes easy to calculate the electric field in the
moving frame

~E ′ = ~E + ~V × ~B (2)

where ~V is the velocity of the plasma, and so

~J ′ = σ( ~E + ~V × ~B)⇔
~J ′

σ
= ( ~E + ~V × ~B) (3)

Since the plasma has a very high conductivity σ → ∞, the last expression can be
approximated by

~E = −~V × ~B (4)

Making use of Faraday’s law
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∂B

∂t
= −∇× ~E = ∇× [~V × ~B] (5)

To fully understand the consequences of the last equation, let us look at the temporal
change in the flux through a surface of the plasma.

dφ

dt
=

d

dt

∫
S

~B · ~n dS =

∫
S

∂ ~B

∂t
· ~n dS︸ ︷︷ ︸

~B changing over time

+

∫
L

~B · (~V × ~dl)︸ ︷︷ ︸
motion of the surface

(6)

where L is the boundary of S. The first term represents the variations of the magnetic
field over time, and the second term is the flux changes due to the motion of the surface.

The second term can be rewritten using Stoke’s theorem

∫
L

~B · (~V × ~dl) = −
∫
L

( ~B × ~V ) · ~dl = −
∫
S

∇× ( ~B × ~V ) · ~n dS (7)

Finally,

dφ

dt
=

∫
S

(
∂ ~B

∂t
−∇× ( ~B × ~V )

)
· ~n dS = 0 (8)

φ = cte (9)

The flux through the surface moving with the plasma remains constant, which im-
plies that the magnetic field is frozen in the motion of the plasma. Figure 1 illustrates
two situations where the last result can be applied.

In the first one, a plasma is created in a magnetic field (a) and so, as it begins to
move, the frozen-in condition will lead to the bending of the magnetic field lines (b).
In the second one, the plasma is created in a region without any magnetic field (c) and
so, as it moves to a zone with a magnetic field, the field lines are repelled in order to
keep the initial flux condition φ = 0 (d).
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Figure 1: Plasma with high electric conductivity interacting with a magnetic field.
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B The Archimedean spiral

The solar wind flows radially off the Sun with velocity ~VSW as it rotates, creating a
spiral pattern known as the Archimedean spiral. Considering a portion of plasma that
is emitted from a point at the solar equator and with longitude φ0. After a time t, the
polar coordinates of the plasma portion in the rotating frame will be

r = V · t+ r0 (10)
φ = Ω · t+ φ0 (11)

where Ω = 2π
26

days−1 is the angular velocity of the Sun. Plugging the two last
expressions it is possible to find a relation between radial distance and longitude, which
characterizes an Archimedean spiral.

r = V · φ− φ0

Ω
+ r0 (12)

As seen in the previous appendix, the high electric conductivity of the plasma ejected
from the Sun leads to the transport of the Solar magnetic field throughout the helio-
sphere. In this appendix, the expression of the HMF will be derived.

Remaining still in the equatorial plane for simplicity, the velocity vector and the
magnetic field only have the r and φ components:

~VSW = (Vr, 0, Vφ) (13)
~B = (Br, 0, Bφ) (14)

Note that the components of ~VSW are just

Vr = V (15)
Vφ = Ω(r − r0) sin θ (16)

The absolute value of ~VSW and ~B only depends on the r and θ coordinates
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Figure 2: Archimedean Spiral.

|~VSW | = VSW (r, θ) (17)
| ~B| = B(r, θ) (18)

The magnetic field must also obey Maxwell’s law

∇ · ~B = 0 (19)

or in spherical coordinates

∇ ·B =
1

r2

∂

∂r
(r2Br) +

1

rsinθ

∂

∂θ
(Bθsinθ) +

1

rsinθ

∂Bφ

∂φ
(20)

Since the field is axially symmetric and Bθ = 0, the only remaining term is

1

r2

∂

∂r
(r2Br) = 0⇔ r2Br = r2

0B0 = cte (21)

Solving for Br,

Br = B0

(r0

r

)2

(22)
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In a steady flow (temporally constant)

∂ ~B

∂t
= 0 (23)

and so the frozen-in field equation attains the form

∇× (~VSW × ~B) = 0 (24)

~VSW × ~B = (0, VφBr − VrBφ, 0) (25)

Writing the curl in spherical coordinates

1

r

∂

∂r
[r(VφBr − VrBφ)] = 0 (26)

Integrating

r(VφBr − VrBφ) = cte (27)

Making use of the initial conditions Bφ0 = 0 and Br0 = B0, the last expression can
be rewritten

r(VφBr − VrBφ) = r0Vφ0B0 (28)

The initial azimuthal velocity is just

Vφ0 = r0Ω (29)

And so equation 28 becomes

r2
0ΩB0 = rVφBr − rVrBφ (30)

Solving for Bφ

Bφ =
rVφBr − r2

0ΩB0

rVr
=
VφBr − rΩ( r0

r
)2B0

Vr
=
Vφ − rΩ
Vr

Br (31)

Far from the Sun rΩ >> Vφ, whence

Bφ ' −
rΩ

Vr
Br = −r

2
0Ω

rVr
B0 (32)
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Assuming that Vr is approximately constant over distance, equation 31 shows that
Bφ decreases much slower than Br.

Bφ ∝
1

r
(33)

Br ∝
1

r2
(34)

Far from the Sun, the azimuthal component of the magnetic field dominates over
the radial component.

Another interesting quantity to calculate is the angle Ψ, between the radial and
azimuthal component of the magnetic field

tan Ψ =
r2

0Ω

rVr
B0 ·

r2

B0r2
0

=
rΩ

Vr
(35)

At large distances, tan Ψ → ∞ and Ψ → 90◦. At Earth, tan Ψ ' 1 and Ψ ' 45◦,
which is in good agreement with the average observed angle.

It is also worth noting that knowing the radial dependences and average values of
the several components of the magnetic field as well as the angle Ψ at Earth is sufficient
to calculate the values of the HMF at any distance from the Sun.

The final expression for the HMF, also known as the Parker Field 1, is

~B =
A

r2
(~er − tan Ψ~eφ)

[
1− 2H

(
θ − π

2

)]
(36)

| ~B| =
A

r2

√
1 + tan2 Ψ

[
1− 2H

(
θ − π

2

)]
where H is the Heaviside step function and A is a normalization constant which is
choosen so that | ~B(r = re)| equals the average HMF on Earth (around 5 nT for periods
of low Solar activity).

A = (1AU)2 B1AU√
1 + tan2 Ψ

(37)

1since it was first derived by Parker in 1958
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