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Abstract

The RICH detector is part of the cosmic-ray Alpha Magnetic Spectometer (AMS)
experiment that is installed in the International Space Station since May 2011. It is
composed of a radiator material on the top of the detector and a matrix of pixelized
photomultipliers coupled to light guides on the bottom. The light tightness of the
detector is provided by surrounding conical mirror. A charged particle crossing the
radiator will radiate a number of cerenkov photons proportional to the particle charge
squared. The RICH detector is aiming to measure with very high accuracy both the
velocity (roughly one per mil for singly charged particles) and the charge of particles
up to the iron nuclei. The charge measurement accuracy depends strongly on sys-
tematic effects that grow with the element charge squared. In order to have a good
nuclei identification up to iron, all factors contributing to evaluate the radiated signal
have to be identified and taken into account. The Cherenkov electromagnetic radia-
tion is of polarized nature. The photon path from radiation point to detection includes
three interfaces: the radiator-air, the mirror-air and the ligh-guide. The transmission
efficiency depends on the photon polarization. Therefore, the effect of the polariza-
tion has to evaluated for both radiator materials, aerogel and sodium fluoride and
compared to the currently one implemented in the charge reconstruction algorithms
developped by the LIP group. The correction has to be implemented in the charge re-
construction efficiency used on data reconstruction and its implication on the charge
measurement accuracy will be evaluated with AMS nuclei reconstructed data.
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Resumo

O detector RICH faz parte da experiência de raios cósmicos AMS que está in-
stalada na ISS desde Maio de 2011. É, por sua vez, constituı́do por um material
radiator no topo e uma de PMT pixelizados acoplados a guias de luz no fundo.
O constrangimento da luz no detector resulta dum espelho cónico que o circunda.
Uma partı́cula carregada que atravessa o radiator vai radiar um número de fotões
proporcional ao quadrado da carga. Por sua vez, um dos principais objectivos do de-
tector RICH é medir com alta precisão a velocidade (sensivelmente 1/1000 por cada
partı́cula carregada) e a carga das partı́culas até ao núcleos de ferro. A precisão na
medição está fortemente correlacionada com os efeitos sistemáticos que crescem
com o quadrado da carga. Portanto, de forma a obter uma boa identificação de
carga até ao ferro, será necessário avaliar o sinal deixado pela partı́cula e inditificar
a mesma de acordo com a medida obtida. A radiação de Cherenkov é uma onda
electromagnética naturalmente polarizada. Na sua propagação pelo detector, cada
fotão de Cherenkov atravessa três interfaces antes de ser detectado: radiador/ar,
espelho/ar e guias de luz. A eficiência de transmissão dependerá da polarização.
Deste modo, o efeito da polarização tem de ser avaliado para ambos os tipos de
radiator (NaF/aerogel) e comparar com o factor resultante da actual implementação
do algorı́tmo de reconstrução de carga desenvolvido pelo grupo do LIP. Portanto, a
correção será implementado nos dados da reconstrução e estudado a a implicação
na medição de carga com os dados reconstruı́dos de AMS.

Palavras Chave

Reconstrução de carga, AMS-02, RICH, Polarização de Cherenkov.
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1.1 Motivation

The study of CR began approximately in 1900, as a result of the observation of
ionisation in gases contained in closed vessels. In order to find some evidences,
balloon flights were undertaken. Such studies, lead by Victor Hess in 1912, allowed
to discover that, instead of decreasing, the ionization of the air strongly increases
with altitude.
This marked the discovery of CR, for which Hess received the Nobel Prize in 1936.
In the following thirty years, cosmic ray research concentrated on the high-energy
properties of cosmic radiation. CR were the predecessors of the accelerators as the
source of high energy particles.
As a result, CR provided a unique tool to study the most energetic particles in the
Universe. For instance, the muon (1947), the positron (1932) and particles cointain-
ing strange quarks were first discovered in cosmic-ray induced reactions[2].
However, the growing interest in particle accelarators, since the middle of twentieth
century, lead CR scientists to direct their attention to accelarator labs.

Figure 1.1: International Space Station.

However, during the last decade an intensive experimental program has been es-
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tablished and will keep on taking place in forthcoming years motivated by the study
of issues like the origin of dark matter, CR propagation through the galaxy and the
study of elementary nuclei (e.g. B, C, He).
The interest in CR is beyond the simple knowledge of experimental particle physics,
since this is a threefold field that also embraces astrophysics and theoretical physics.
In fact, the energy range acceptance of balloon-borne and satellite experiments is
comparable to that reached by the most recent accelerators. For example, the LHC
is reaching energies of 108GeV, while the big CR ground detectors are measuring
particles within energy above 1011GeV.

1.2 Thesis Outline

In the first part of this thesis the AMS-02 RICH detector efficiency and the charge
reconstruction method are described. The second part is devoted to the characteri-
zation of a new effect in the RICH charge reconstruction: CK polarization.
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2.1 Introduction to Cosmic-Rays

CR are evaluated by the integral intensity I, which regards the number of particles
with energy over E crossing an unit area per unit time and unit solid angle. Hence
its units are [I] = cm−2s−1sr−1.
The cosmic ray spectrum can be described by

I(E) =
dN

dE
∝ E−α (2.1)

in the energy range from a few GeV to 100 TeV.
Figure 2.1 shows I(E) regarding several important elements. It also follows immedi-
ately that the main component component of CR are protons (∼ 90%), with addition-
ally around 10 % of helium and smaller admixture of heavier elements. In addition,
this figure allows to consider a few GeV power-laws to describe CR spectra. There-
fore the total cosmic ray spectrum is given by

I(E) ∼ 1.8E−α
particles

cm2ssrGeV
(2.2)

where around 1015 eV (the knee ), the slope range goes from α ' 2.7 to α ' 3.0.
Figure 2.1 shows cosmic ray spectrum combined with the power-law form function.
In further detail, it regards several experiments according to the energy range as
follows:

• LEAP: 109 ≤ E ≤ 1011 eV

• PROTON: 1012 ≤ E ≤ 1014 eV

• Akeno: 1015 ≤ E ≤ 1017 eV

• HiRes: 1018 ≤ E ≤ 1020 eV

Conclusively, CR experiments are divided by two main categories (see figure 2.2),

• Air-shower detection : 1014 ≤ E ≤ 1018eV/nucleon;

• Low energy detection: E ≤ 103 eV/nucleon (e.g. AMS-02).

6



(a) (b)

Figure 2.1: a) Cosmic rays intensity for several elements. b) The cosmic ray spectrum I(E)
as function of kinetic energy E, compiled using results from the LEAP, proton, Akeno, and
HiRes experiments.

2.2 AMS-02: detector principles and scientific goals

In the previous section 2.1 it was described different experiments according to
the energy range detection. Although, in this thesis the main focus will be AMS-02 ,
meaning that the energy spectra will be aroun GeV magnitude. Hence, in this section
will include the following topics:

• Scientific goals;

• Detector principles.

2.2.1 AMS-02 Scientific Goals

The AMS-02 experiment aims to accomplish the following physics goals:

• Detection of charged particles (e.g. B, C) within a rigidity region between ∼0.5
GeV and ∼2 TeV and photons with energies up to a few hundred GeV;

• A search for heavy antinuclei (Z≥2), which eventually discovered would be an
evidence of cosmological antimatter;

• Evaluation of possible dark matter signatures in cosmic ray spectra, using indi-
rect signals such as annihilation products.

7



Figure 2.2: Cosmic Ray Energy Spectrum.

2.2.2 Detector Description

The AMS-02 detector is the first large magnetic spectrometer in space, and it
is able to measure, with high accuracy, the cosmic ray flux above the Earth’s at-
mosphere. Adding to this, AMS-02 has an unprecedented precision in detection
and identification of cosmic rays coupled with state-of-art particle identification tech-
niques. The spectrometer is composed of several subdetectors[8]:

• a Transition Radiation Detector (TRD)

• a Time-of-Flight (TOF) detector

• a Silicon Tracker

• a set of Anticoincidence Counters (ACC)

• a Ring Imaging Cherenkov (RICH) detector

• an Electromagnetic Calorimeter (ECAL).

The permanent magnet

Similar to the permanent magnet used in the AMS-01 flight, the AMS-02 one is a
cylinder with a diameter of 1m and a height of 1m, made of 6000 Neodimium-Iron-

8



Figure 2.3: The AMS-02 detector.

Boron blocks. It creates a magnetic field of 0.15 T (bending power is
BL2 =0.15Tm2), uniform along the x axis, and with negligible dipole moment.

Transition Radiation Detector (TRD)

The TRD is the first sub-detector that most particles face when entering in AMS-
02 detector. The basic principle of TRD working consists in radiation emission when
charged particles cross the boundary between two media with different dielectric
constants: ε1, ε2.
In particular, TRD detects electromagnetic radiation in the X-ray energy region ( 1-50
KeV). Since the transition radiation is proportional to the relativistic γ-factor (γ =E/m),
this means that it has a typical thereshold of γ ∼ 500, ensuring that light particles
such as positrons have a much higher probability of emitting transition radiation than
heavy particles such as protons.
As a result, the TRD allows a separation between low and high mass particles (for a
proton with momentum range of 10-300 GeV, the rejection factor is 102 − 103).
Although the emission probability at a single interface is very small (∼ 10−2), this can
be enhanced by a multilayer structure, which implies multiple transitions.
The AMS-02 TRD consits of 328 modules made of a fleece radiator 20mm thick and
straw tube proportional wire chambers filled with a Xe/CO2 (80%:20%) mixture.
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Figure 2.4: TRD module.

Time-of-Flight (TOF)

The TOF system is the subdetector that provides the fast trigger for charged
particles, developing an efficient distinction between upward and downward particles
through the measurement of particle velocity β (σβ = 3% for protons) and absolute
charge estimate up to Z ' 20.
The TOF system consists of four planes with 8, 8, 10, 8 plastic scintillator counters
each.The planes are roughly circular with 12 cm wide scintillator paddles, one pair
of planes above the magnet called the upper TOF and the other below the magnet
TOF, called the lower TOF. The quality of the measurements is increased by having
perpendicular paddle orientations in both pairs of planes.

Figure 2.5: TOF planes.

Silicon Tracker

The Silicon Tracker is AMS-02 detector designed to make measurements of par-
ticle positions with a precision of ∼10µm along the bending plane (yOz) and ∼30µm
on the transverse direction. The evaluation of the particle trajectory inside magnetic
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cavity is a key point to calculate the particle rigidity with a precision of 2% at few GV
(the maximal detectable rigidity is around 3 TV). The silicon tracker is also capable
of measuring the charge of particles up to Z ' 26.
The tracking system is composed of 9 layers: 1 above the TRD, 1 above the ECAL,
and other set of 7 in the central region (inner tracker). The layers are made of ∼
2500 double-sided silicon microstrip sensors arranged on 192 ladders.

Figure 2.6: Tracker plane.

The Anti-Coincidence Counters (ACC)

The AMS-02 ACC are made of scintillators, surrounding the silicon tracker and
fitted tightly inside the inner bore of the detector’s magnet. The ACC detects parti-
cles that enter the tracker laterally, beyond the AMS acceptance, which may create
misleading signals int the event reconstruction.

Figure 2.7: ACC top view.

The Ring Imaging Cherenkov detector (RICH)

The RICH is a proximity focusing device which is responsible for measuring ac-
curately the velocity of charged particles through the emission of a Cherenkov cone,
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when traversing the dual radiator configuration on the top made of aerogel and
sodium fluoride (NaF). The aperture of the cone (θc) depends on the velocity (β)
and on the refractive index of the material. By collecting the signal of emitted pho-
tons, it is possible to evaluate the charge of the particle.
The RICH system also includes a conical mirror, light guides (LG) and a photon de-
tection matrix composed of 680 PMTs.
A more detailed description of this subdetector is given in the next section.

Figure 2.8: Sketch of the AMS-02 RICH: the radiator layer is placed on top of the conical
mirror; below it the PMT matrix with the support structure are visible.

The Electromagnetic Calorimeter (ECAL)

The ECAL, located at the bottom of the AMS-02 detector, is a fine grained lead-
scintillating fiber sampling calorimeter, with an active area of 648×648 mm2 and a
thickness of 166.5 mm. It provides an accurate 3-D imaging of the longitudinal and
lateral shower development. In addition, it works as a powerful tool to discriminate
hadrons from electrons and positrons, since the profile of showers developed inside
the detector is completely different.
Another key feature of ECAL is the capability of detecting gamma-rays, either by
measuring the interaction of the photon inside the detector, or through the identifica-
tion of particle-antiparticle pairs produced in the matter preceding it.

The AMICA Star Tracker

The Astro Mapper for Instrument Check of Attitude (AMICA) is composed by a
pair of small optical telescopes instaled near the Silicon Tracker structure. Its main
purpose is the measurement of detector orientation, allowing the identification of
γ-ray sources.

12



2.3 RICH detector

The Ring Imaging Cherenkov detector is based on photon emission by a charge
particle (so-called Cherenkov effect). Thus RICH is able to measure the particle
velocity β and charge Z. Furthermore, it is obtained a β measurement precision of
0.1% for Z = 1 and improving with the number of collected photoelectrons until the
saturation limit ( ∼ 0.01 %).
Nevertheless, the main goal is improving the electric charge separation at least up
to the iron element (Z = 26).
In addition, the RICH will also provide the rejection of albedo particles, since they
are not expected to generate a response from the counter.
In this section, the following topics will be approached:

• CK radiation;

• RICH setup.

2.3.1 Cherenkov radiation

When charged particles crossing a medium n > 1 with a velocity (v ) beyond the
speed of light in that medium (vl=c/n, where c is the light speed in vacuum), they
emit CK radiation. CK photons are produced uniformly (if n is constant) along the
path and they are emitted at a fixed angle θc, considering the particle momentum
direction as the reference axis. In addition, there is an azimuthal symmetry in CK
radiation emission.
The CK angle θc is given by the formula[3]:

cos(θc) =
1

nβ
(2.3)

Since the refractive index n is constant, the maximum CK angle value is reached for
ultrarelativistic particles (i.e β ' 1)

θmaxc =
1

n
(2.4)

On the opposite side, the lowest value for velocity is constraint by the condition
cos(θc) = 1, which means that

βc =
1

n
(2.5)

where βc is the threshold speed. Consequently, for different refractive indices there
are different thereshold velocities ir thereshold momenta as well as different maxi-
mum emission angles.
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Figure 2.9: Dependence of the emission angle θc with the particle velocity (β) for two mate-
rials: aerogel and NaF.

CK radiation effect spans a frequency range (ω) that includes the various Fourier
components of the electromagnetic pulses (~k) emitted by polarized medium dipoles.
This coherent light emission, with a cone shape, has a polarization vector in the
plane defined by the charged particle direction and photon direction.
The energy transported by CK radiation (E) per unit of length (dx) and range fre-
quency (dω) for a particle of charge Ze was calculated by Frank and Tamm, taking
the form:

d2E

dxdω
=
Z2α~
c

(
1− 1

β2n2(ω)

)
=
Z2α~
c

ω sin2(θc) (2.6)

where α = e2

4πε0c
= 1/137.04 is the fine structure constant. Due to chromatic disper-

sion of the optical medium, n is a function of the radiation frequency ω. The radiated
energy grows proportionally to the frequency and the square of the electric charge.

For the purpose of a qualitative discussion about energy loss by CK effect, the
Bethe-Bloch equation can be approximate given by

dE

dx
' ρ(2MeV cm2/g)

Z2

β2
(2.7)

For instance, for electrons with energy over 100 keV, velocity is close to the velocity
of light (β ' 1), resulting in an energy loss by ionization about 2MeV/cm multiplied
by density of the medium. On the other hand, the same particle loses about 5× 10−4

MeV (n = 1.334) by CK effect (in the spectral range λ = 400 − 700 nm). This shows
that there is a small amount of energy carried by CK radiation compared with other
energy losses such as ionization.
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Figure 2.10: CK light polarization vectors. The electric vector ~E lies in the plane defined by
the particle direction and the photon direction.

The description of CK phenomena in the RICH has a strong dependence on the
number of radiated CK photons used in the charge reconstruction. Since the energy
carried by each photon is

Eγ = ~ω (2.8)

it happens that the total number of radiated photons, N rad
γ , is closely related with the

total radiated energy, E, directly from the following expression

E = N rad
γ Eγ =⇒ dE = dN rad

γ Eγ (2.9)

Introducing the expression (1.4) back into (1.7), the number of radiated photons per
unit of length and range of frequency is described by:

d2N rad
γ

dxdω
=
Z2α

c

(
1− 1

β2n2(ω)

)
(2.10)

On other hand, the number of radiated photons per unit of length and energy is given
by

d2N rad
γ

dxdEγ
=

C︷︸︸︷
2πα

hc
Z2

(
1− 1

β2n2

)
(2.11)

Indeed, the expression (1.9) shows that light yield increases with radiator thickness
(L), the squared particle charge (Z2), the particle velocity (β) and the refractive index
of the medium (n). The constant term C is ∼ 370cm−1eV −1, which allows to write:

d2N rad
γ

dxdEγ
' 370Z2

(
1− 1

β2n2

)
[cm−1eV −1] (2.12)
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The number of photons emitted per unit path and per unit energy interval is constant
for a given charge Z and this quantity is a key feature in RICH detector design.
The total number of CK photons emitted in a radiator of thickness L is a result from
(1.10) integration. Only a fraction number of photons is detected by the photode-
tectors, due to propagation from emission to detection point and to limited detector
efficiency (quantum efficiency), that are accounted in overall efficiency (ε) evaluation.
Hence, the number of photoelectrons per unit of length(cm) is

Np.e. ' 370Z2L < sin2(θ) >

∫
ε(E)dE = 370Z2L < sin2(θ) >< ε > ∆E (2.13)

Conversely, the total number of radiated photons per unit of length in terms of the
wavelength range is obtained using the following integration:

dN rad
γ

dx
= 2παZ2

∫ λ2

λ1

(
1− 1

β2n2(λ)

)
dλ

λ2
(2.14)

Consequently, the number of CK photons emitted per unit of wavelength interval dλ
is proportional to dλ/λ2, which means that most of the photons are emitted in the UV
region. In addition to this, the variation of n(λ) is smooth in the same range,〈

1− 1

β2n2(λ)

〉
=< 1− cos2(θc) >=< sin2(θc) > (2.15)

The number of radiated photons per unit of length becomes

dN rad
γ

dx
= 2παZ2 < sin2(θc) >

(
1

λ1

− 1

λ2

)
(2.16)

2.3.2 RICH setup

The AMS sub-detector RICH relies on a proximity focusing device with a dual
solid radiator configuration at the top made of 25 mm thick aerogel (n = 1.050) and 5
mm thick sodium fluoride (NaF) tiles, whereas the latter is crossed by ∼ 11% of the
events. Moreover, the RICH has a high reflectivity mirror surrounding the whole set
and a detection matrix with light guides and photomultiplier tubes (PMTs). The RICH
has a truncated conical shape with a top radius of 60 cm, a bottom radius of 67 cm
and a total expansion height of 47 cm. The total height of the detector is 60.5 cm.
The photodetector plane is made of an array of 680 PMTs, with a 64 × 64 cm2 cen-
tral hole to minimize matter in front of electromagnetic calorimeter. In figure ?? a
perspective and schematic view of the RICH detector with the corresponding dimen-
sions is represented.
A charged particle crossing the dielectric material of the radiator with a velocity higher
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than the light speed in the medium emits a cone of CK photons. Afterwards, this light
cone (the so called CK Cone) intersects the detection plane, drawing a ring as the
one represented in figure 2.11.
The proximity focusing device is important due to the formation of a set of concentric
CK rings resulting from the radiator thickness. Each CK ring corresponds to a differ-
ent emission point located along the particle’s path. This RICH focalisation system
has a negligible error associated with emission point coordinates, since it has a small
radiator thickness.

Figure 2.11: Beryllium event with β ' 1 generated in the NaF radiator and detected in the
PMT matrix.

On other hand, there is an uncertainty on the CK angle, which is given by the
sum in quadrature of all the possible sources of error.
The physical quantities required to find θc are:

• Particle direciton (θp,φp)

• Photon detection coordinates on the photodetector surface

• Chromatic dispersion of the radiator

The particle direction is not measured by the RICH subdetector. Instead, the exter-
nal tracker detector must provide the particle direction and impact point on the top
of the radiator, thus precision of θp and φp depends on this detector’s sensivity. On
the other hand, photodetectors must have an accurate position measurement of CK

17



ring, so that the global measurement is not compromised.
The last item, chromatic dispersion of the radiator, is an intrinsic source of uncer-
tainty, since depends on detector properties:

σ(E) ∝
(
dn

dE

)
∆E (2.17)

Consequently, this error can be reduced only by constraining the energy bandwidth,
∆E.

Figure 2.12: Perspective and side-view of the RICH detector.

2.3.2.A Radiator material

The radiator is a key component of any RICH detector, since the kinematic range
and the velocity resolution strongly depend on its optical properties.
The chosen configuration for the AMS-02 RICH consists of a mixed radiator of silica
aerogel and sodium fluoride (NaF). The set of radiator tiles (blocks of 11.4 × 11.4 ×
2.5 cm3 of aerogel and 8.5 × 8.5 × 0.5 cm3 of NaF) covers the upper section of the
mirror, as shown in 2.13. The radiator blocks are supported by a plastic foil, covering
a total surface of ∼11310 cm2.

CK cones produced in the NaF radiator have a larger opening angle than those
produced in aerogel. Therefore this material is positioned in the central zone (34 ×
34 cm2), to enhance the reconstruction efficiency and to enlarge the kinematic range
towards lower energies.

Sodium fluoride

Sodium fluoride is a crystal of refractive index 1.334, which means that the theresh-
old for CK light emission is βth = 0.75. Due to its high refractive index, the expected
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Figure 2.13: Radiator container with part of the tiles assembled.

β resolution in the the AMS/RICH configuration is σ(β) ' 3 × 10−3, and has the ad-
vantage of increase the kinematic range down to 1.1 GeV/c for protons/anti-protons.
In addition, this crystal has two characteristics of great interest for CK detectores:

• The lowest refractive index of all common optical materials;

• High transparency to UV light.

Silica Aerogel

The material covering most of the acceptance of the AMS RICH is a silica aerogel
radiator. Most gas radiators have refractive index lower than 1.0018 and liquid radia-
tors have n higher than 1.27. Thus, the only material which can fill the gap between
these values is silica aerogel, with a refractive index ranging from 1.004 to 1.1. The
composition of aerogel is basically SiO2 and air.
The relative amount of SiO2 defines the final value of the refractive index. Hence,
in order to get the desired refractive index it is only necessary to change its density
(ρ). The expression relating ρ ( in g/cm3) with the refractive index n of the resulting
material is given by:

ρ =
(n− 1)

0.28
(2.18)

The aerogel radiator has optical properties such as granular structure ( typically of
few nanometres), which can disperse visible light through Rayleigh scattering phe-
nomena. This is a drawback of aerogel for RICH detectors, since it leads to a loss
of part of the CK photons produced. The transmittance of an aerogel sample is
described by,

t(λ) ∝ Ae−
xC
λ4 (2.19)

where λ is the wavelength of the photon, x is the path length of the photon inside the
aerogel, A is a constant depending on the material and C[µ m4/cm] is a characteristic
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Figure 2.14: Chromatic dispersion, used in simulation, in the aerogel n = 1.050 radiator (left)
and in the NaF radiator (right).

parameter of the material, the so-called clarity. Hence, the perfect conditions would
be fulfilled for A ∼ 1 and C ∼ 0.
In the next chapters, a nominal refractive index n = 1.05 will be used, providing
thereshold velocity βth = 0.95 (e.g. the beta resolution for Z = 1 particles is ∼ 0.1 %.)

2.3.2.B Mirror

The high-reflectivity mirror surrounding the whole RICH expansion volume is an
important tool to increase this subdetector’s acceptance. Since around 33% of the
photons produced in the aerogel point outside the matrix, the mirror helps recovering
the great majority of these photons.
The RICH mirror has a truncated conical shape and is generally described by the
following properties:

• Height= 46.3 cm

• Top Radius = 60 cm

• Bottom radius = 67 cm

• Weight= 3.5 kg

• Mixed material composition : SiO2 (300 nm); Al(100 nm)

The material composition of the mirror guarantees a high conductivity (σ), which
ensures a high reflectivity as will be discussed in the next chapter. In addition, the
reflectivity of mirror has a weak dependence on photon wavelength (figure 2.15), so
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it will be not considered in the further study of reflectivity.

Figure 2.15: Dependence of mirror reflectance on photon wavelength.

On other hand, figure 2.16 show the fraction of the photons generated by a particle
with β ' 1 that hits the PMT readout matrix after being reflected. In the NaF case,
all events are at least partially reflected due to the large aperture of CK cone (θc ∼
41◦). Although, there will be some energy losses due to Cherenkov photon/mirror
interaction, since it is not a perfect metal ( more detailed explanation in chapter 5 ) .

(a) (b)

Figure 2.16: Photon‘s incident angle at the mirror for aerogel (left) and NaF events (right).
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(a) (b)

Figure 2.17: Photon‘s incident angle at the mirror for aerogel (left) and NaF events (right).

2.3.2.C Light guides and detection cells

The matrix plane is composed of an array of adjacent light guides coupled to
photomultipliers, so that the dead areas are minimized, and as a result increasing
the photon collection efficiency. A LG unit is structured in a pyramidal polyhedron
composed of 16 independent plastic tubes glued on a plastic plate. The tubes are
made of an acrylic plastic free of UV absorbing additive with a refractive index of
1.49, close to the one of the PMT window (n = 1.5). The main purpose of these
characteristics was to obtain a transmittance as high as possible over the wavelength
range of the PMT detection ( from ∼300 to 650 nm) .
A schematic insertion of the light guide with a PMT is shown in figure 2.18.
Despite the main goal of reducing the dead areas between adjacent PMTs, there

are gaps of 3 mm even at the top of light guides due to the presenece of the shielding
and the mechanical asssembly reasons.
Thereby, inside the LG the photons are conducted by internal reflections.The light
guide unit is optically coupled to the active area of phototube cathode through a 1
mm flexible optical pad. In perspective, the light guide is generally described by the
following properties:

• Total Height: 31 mm

• Total Volume: 13 cm3

• Collection surface area: 34×34 mm2
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Figure 2.18: PMT housing plus light guide.

• Readout pixel size: 8.5 mm

The optimal dimensions have been determined so that photon collection efficiency
could be maximized.

2.3.3 Photomultipliers

Light detection in the AMS-02 RICH is performed by an array of 680 Hamamatsu
PMTs of model R7600-00-M16.[Ref] This phototube has been chosen due to its
reduced size, fast response under low operational voltage (800 V), large anode uni-
formity and low sensivity to external magnetic fields. On the other hand, the specific
needs of the RICH require a high photon efficiency and good spatial resolution to
allow a precise reconstruction of the CK ring. Moreover, it has a good single pho-
toelectron resolution and linearity in the response to perform the photon counting
needed for charge measurement.
The photomultiplier selected is the 4×4 multianode R7600-00-M16 from Hamamatsu,
with a sensitive zone of 4 × 4 mm2 and a pitch of 4.5 mm. According to figure 2.19,
it has the spectral maximum response at approximately λ = 420 nm.
Regarding the spectrum of the wavelength spectrum of the radiated CK photons,
taking into account the chromatic dispersion, n(λ), the average quantum efficiency
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follows

< εQ.E. >=

∫ λmax
λmin

εQ.E.
1
λ2

(
1− 1

β2n(λ)

)2

dλ

∫ λmax
λmin

1
λ2

(
1− 1

β2n(λ)

)2

dλ

(2.20)

which gives for β ' 1 particles in aerogel a mean quantum efficiency < εQ.E. >=

0.1443 and for sodium fluoride < εQ.E. >= 0.1444. [ReferencePhDLuisa]

(a) (b)

Figure 2.19: a)The R7600-00-M16 Hamamatsu PMT. b)PMT quantum efficiency variation
with the detected wavelength.

When photons strike the photocatode window, a bunch of electrons is removed from
the valence band through photoelectric effect. As a result, there is a emission of
photoelectrons which will be collected and amplified by a chain of 12 dynodes with a
total gain 106 for an applied voltage of 800 V. The single photo electron resolution is
∼ 0.7 and the response is expected to be linear up to ' 80 p.e.
The RICH photomultipliers will operate with a high residual magnetic field at the PMT
plane (∼ 300 G), so they are protected by a magnetic shield.
The CK photons are then collected through plastic LG positioned on top of the PMTs
and connected to the PMT window through a flexible optical pad of 0.5 mm thickness.
Each LG has 16 individual guide pipes, one for each pixel.
In addition, the PMT matrix is composed of different modules:

• Square (with 143 cells);

• Triangular ( with 27 cells).
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As mentioned before there is a non-active area at the centre to insert the electromag-
netic calorimeter (ECAL), which is square with a side length of 63 cm. The detailed
description of the matrix is represented in the left-hand scheme of figure 2.20 .

(a) (b)

Figure 2.20: a)Top view of the RICH PMT matrix (680 PMTs): detail of the matrix with the
active parts and the inactive ones: ECAL hole, module gaps. b) Distribution of the shielding
thickness depending on the magnetic field intensity: Yellow cells Thickness= 1.2 mm; Olive
Thickness = 1.0 mm; Cyan cells Thickness = 0.8 mm.
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3
Charge reconstruction in the RICH
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3.1 Introduction

The Cherenkov photons generated in the RICH radiator are uniformly emitted
along the length of the particle path L, inside the dielectric medium and their num-
ber per unit of energy depends on the particle’s charge, Z, velocity, β, and on the
refractive index, n, according to the expression[6]:

dNγ

dE
∝ Z2L

(
1− 1

β2n2

)
= Z2L sin2(θc) (3.1)

Therefore, several steps must be taken to accomplish charge reconstruction:

• Cherenkov angle reconstruction (θc).

• Particle path length estimation, ∆L, which relies on the information of the par-
ticle direction (θparticle, φparticle) provided by the tracker.

• Photoelectron counting associated to the Cherenkov ring.

• Photon detection efficiency evaluation.

The number of photoelectrons (Npe) which will be detected depend on:

• interactions with the radiator: absorption and Rayleigh scattering in the aerogel
case (εrad);

• photon ring acceptance: part of the photons is lost through the radiator’s lateral
and inner walls, due to total reflection in radiator-air transition, because of mirror
absorption and because some photons fall into a non-active area (εgeo);

• light guide losses (εlg);

• photomultiplier quantum efficiency (εpmt).

Thus, the number of photoelectrons can be simply given by

Npe ∝ ∆LZ2sin2θc (3.2)

where ∆L is the radiator length crossed by the charged particle and θc is the Cherenkov
angle. Afterwards, the efficiency factors should be also included in the determination
of the number of photoelectrons. Regarding expression , it follows then

Npe ∝ ∆LZ2sin2θcε
radεPMT εgeo (3.3)
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The expression 3.3 can also be expressed in terms of the number of photons (N0)
emitted by a proton with the same velocity and with the same crossed radiator length,
given by

Npe = N0Z
2 (3.4)

where N0 = ∆LZ2sin2θcε
ring ( εring is total ring factor efficiency ).

Therefore, the charge of the incident particle can be simply estimated by

Z2 =
N

N0

(3.5)

Thus, replacing expression (3.3) in (3.5), the charge can now be expressed as

Z =
β2n2 − 1

β2n2 − β2

cos(θ)

N0

√∑Nhits
k=1 npe(k)

εfull(event)
(3.6)

The Npe associated error follows from a quadratic expansion given by:

(∆N)2 = (∆N stat)2 + (∆NPMT )2 + (δN sys)2 (3.7)

where (∆N stat) is the statistical uncertainty, ∆N stat =
√
N ;∆NPMT =

√
Nσpe is the

PMT signal amplification’s error; finally δN sys is the systematic error whose origin will
be addressed after all the algebraic manipulation.
On the other hand, the resulting charge error is given by

∆Z =
1

2ZN0

∆N (3.8)

Replacing equation ( 3.5 ), it results then:

∆Z =
1

2
√
N0

∆N√
N

(3.9)

Inserting ∆N in expression 3.9, the following result comes after some algebraic ma-
nipulation:

∆Z =
1

2

√√√√√√ 1 + σ2
pe

N0︸ ︷︷ ︸
statistical error

+ Z2

(
δN

N

)2

︸ ︷︷ ︸
systematic error

(3.10)

Indeed, charge can also be written as function of Cherenkov radiator key parameters
such as refractive index (n ). In addition, since the charge study will rely on efficiency
factors ( resulting from Cherenkov photons in the detector), it would be also interest-
ing to include them in charge reconstruction. As a result, the main topics in the next
sections will be efficiency factors and charge reconstruction uncertainties resulting
from expression (3.6).
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3.2 Efficiency determination: 1-D approach

The 1-D approach is a charge determination method where the main geometry
factor ( detector acceptance) is described by azimuthal angle (ϕ) in the charged par-
ticle frame (see figure 3.1 ). This approximation can be performed since number
Cherenkov photons is uniform along φ around particle direction [11].

Figure 3.1: Description of the particle track and photon ring emission geometry. The par-
ticle trajectory depends on {xv, yv, zv, θ, ϕ} , while each photon is parameterized by θc and
azimuthal angle ϕ [3].

It turns out that ring acceptance is the fraction of radiated photons. For instance,
it will regard some geometry factors such as:

• the number of photons reaching the photomultiplier;

• ring pattern’s topology (e.g. particle’s impact point, direction and velocity;
Cherenkov angle) and RICH geometry.

In addition, the RICH geometric acceptance will also include different photon loss
factors given by:

• photons escaping through the radiator’s lateral and inner walls (εwall);

• losses in the conical mirror ( the mirror’s reflectivity is assumed to be
∼ 85%);

• reflection of Cherenkov photons at the radiator-air interface;

• photons falling in a non-active area (εLG) of the detector plane (gaps in the
PMTs, ECAL hole, dead PMTs or pixels).

Figure 3.2 shows a typical Cherenkov ring pattern to the radiator material’s refractive
index: NaF (n = 1.334) or Aerogel (n = 1.050).
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(a) (b)

Figure 3.2: Two patterns for the same particle kinematics (β = 0.9999 and θ = 200). The
particle track projection is described by the dashed line. The symbols · and × indicate the
positons at the radiator top level and at the detection matrix, respectively. a) Ring pattern for
an aerogel (n = 1.050) event. b) Ring pattern for a NaF (n = 1.334) event [10]

The charged particle emits a very large cone - aperture with 41 0 (β ∼ 1)- when it
crosses the NaF radiator and this is why there are almost always reflected photons,
in NaF events with an average of about 50% of the Cherenkov ring being reflected at
the mirror.
Considering the same kinematic conditions, the aerogel radiator’s distribution regard-
ing the fraction of reflected photons has a larger standard deviation than NaF one.
The Cherenkov angle is approximately ∼ 180 for β = 1. Adding the previous ideas, it
can be marked a correlation between the particle’s direction (θ, φ) and impact point
on radiator (xv,yv) (see figure 3.1) with Cherenkov cone detection ( it will be dis-
cussed in chapter 5).
As a result, for a certain event, the global photon ring acceptance is obtained by
adding the different fractions of detected photons. For instance, there are the fraction
of photons hitting the PMT matrix directly (εDirgeo ) and the fraction of incident photons
in the mirror (εMir

geo ) weighted by the mirror reflectivity (ρ).Therefore, the photon ring
acceptance is given by:

εgeo = εDirgeo + ρεMir
geo (3.11)

In addition to this effect, there will be an effect that will also play a role in geometrical
efficiency: the loss of photons in the ECAL hole (εholegeo ).
Considering that Cherenkov photons are emitted uniformly along azimuthal angle (φ)
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around particle’s reference frame, the values of εDirgeo ,εHolgeo and εMir
geo correspond to the

extreme intersection points of the Cherenkov cone with the non-active regions of the
detector, ϕh, together with the mirror, ϕm (see in figure 3.3).

εDirgeo =
|ϕm1 − ϕh1 |+ |ϕm2 − ϕh2 |

2π
(3.12)

εMir
geo =

|ϕm2 − ϕm1 |
2π

(3.13)

εHolgeo =
|ϕh2 − ϕh1 |

2π
(3.14)

For a more detailed explanation see thesis (...).

Figure 3.3: 3-dimensional view of photon pattern tracing in RICH detector.

3.2.1 Radiator wall efficency

Neither of the two RICH radiators is made of a single block. There are 92 aero-
gel tiles and 16 tiles for NaF. Aerogel tiles are separated by opaque poron walls.
Hence, if a particle crosses the radiator near a tile edge, it could happen that part
of its Cherenkov photons may be lost (since those photons hit the walls), or are not
radiated at all, as shown in figure 3.4.
The study of this effect is based on the following motivation: the spread of Cherenkov

light emission along the radiator’s thickness. This effect partially explains the Cherenkov
ring’s non-zero width.
On the other hand, the Cherenkov photon emission point is described for the most
purposes as approximately fixed, ignoring the vertical spread in the particle radia-
tion emission process. In this case, however, since the effect in question is linked
with radiator gaps, this approximation cannot be assumed, so a ring sampling was
performed at 10 different points along the particle’s trajectory in the radiator region.
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Figure 3.4: Effect of radiator walls on collected light. Cherenkov cones for particles A and B
are not affected, but for particle C a significant fraction is blocked by the opaque poron wall
between tiles.

Afterwards, an average result (fraction of points not impacting radiator walls, each
point weighted according to the expected light loss from top to bottom due to Rayleigh
scattering) is used to correct the global efficency.

Figure 3.5: Charged particle crossing the edge of aerogel/NaF tiles.
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3.2.2 Rayleigh scattering and radiator absorption

The main interactions of Cherenkov photons inside aerogel are due to Rayleigh
scattering and absorption, while for the NaF radiator the only significant interaction
that photons can suffer is absorption, although, it is negligible since the radiator thick-
ness is very small compared to the absorption length. Considering that the absorp-
tion rate is two orders of magnitude below the scattering rate in the aerogel, then it
can be neglected in a first approximation. However, there is another considerable ef-
fect resulting from transition of Cherenkov photons between radiator (dielectric) and
air due to their polarization ( it will be discussed further in chapter 5 ). Nevetheless,
the interaction rate of photons inside the radiator is function of the two main variables
that follows:

• Distance crossed by the photons inside the radiator : dγ(θ, φ, θc, z, ϕ);

• Interaction length: Lint.

The distance dγ depends on particle direction (θ, φ), photon emission point (z) and
photon azimuthal angle ϕ. Actually, the photon crossed distance can be simply writ-
ten as dγ(z, ϕ) for each photon generated by the same particle. On the other hand,
the interaction length depends on the wavelength of the photons, according to the
following expression

Lint =
λ

C
[cm] (3.15)

where C is the radiator’s optical clarity in µm4cm−1. For instance, the aerogel radiator
has an interaction length given approximately by [PhDLuisa page 146]

Lint(C) =
0.0327

C0.867
[cm] (3.16)

In order to find the radiator efficiency it is necessary to integrate the probability of a
photon not to interact in the radiator, given by :

pintγ = e
− dγ (z,ϕ)

Lint (3.17)

Therefore, the fraction of photons suffering no radiator interaction (radiator efficiency)
can be evaluated through the following expression:

εrad =
1

∆ϕHrad

∫ Hrad

0

dz

∫ ϕimax

ϕimin

e
− dγ (z,ϕ)

Lint dϕ (3.18)

where Hrad is the radiator thickness. For instance, for an aerogel radiator (n = 1.050),
with a clarity coeficient C = 0.0052µm4cm−1 and a thickness Hrad = 2.5 cm, the
average εrad is about 65% (see figure 3.6). For more detailed derivation see [PhD
Luisa].
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Figure 3.6: Distribution radiator efficiency by event, εrad, for an aerogel radiator (n = 1.050),
2.5 cm thick, with a clarity coefficient C = 0.0052µm4cm−1.

3.2.3 Photomultiplier efficiency

The main PMT effect is described by quantum efficiency (εPMT). Ultimately, only
a small fraction (εPMT ' 10%) of Cherenkov photons reaching the PMT window are
detected. Generally, this efficiency is expected to be similar for all PMTs and photon
trajectories. Therefore, it may be incorporated, at least in first approximation, as a
global factor.

3.2.4 Light guide efficiency

The detection of Cherenkov photons at the LG surface faces two potential inef-
ficiencies: may be reflected at surface or transmitted between adjacent light guide
divisions. The LG effiency factor εLG depends on the incident angle of the photons
at its top (θγ).Therefore, photon inclination and impact point will influence the proba-
bility of a photon being transmitted and reaching the PMT window. Figure 3.7 shows
light guide efficiency as function of photon inclination, which was obtained from de-
tailed simulations performed at LIP of photon propagation in the AMS pyramidal light
guides, and is incorporated in the LIP charge reconstruction algorithm.
Moreover, from figure 3.7 it can be estimated that the highest efficiency (∼ 75%)
occurs for perpendicular incidence (for Monte Carlo events), for photon inclinations
not greater that 200 with respect to the interface normal. Then, it drops rapidly from
∼ 70% at 200 to ∼ 50% at 350.
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(a) (b)

Figure 3.7: a)Light guide scheme with the definition of the photon incident angle(θγ). b)Light
guide efficiency as function of the incident angle at the top of the light guide for both RICH
simulation and AMS data.

The efficiency is calculated event by event taking into account the probability of a
given photon getting into the photomultiplier cathode since it entered the LG, and
integrating it along the reconstructed photon pattern:

εLG =
1

∆ϕ

∫
∆ϕ

εLG[θγ(θ, θc, ϕ)]dϕ (3.19)

Therefore, according to the expression 3.19 light collection efficiency depends not
only on photon inclination θγ, but also on the photon’s azimuthal angle ϕγ. This shows
a change in LG efficiency calculation, since there will be a correlation with the pair
coordinates (θγ, φγ) and the Cherenkov ring covering of the active LG surface, which
will constrain the number of detected photons. In further detail, LG size is 34 × 34

mm and the LG pitch is 37 × 37 mm, the fraction of active area is
(

34
37

)2

= 84.4%.

Even though the region covered by LG gaps is small compared with the Cherenkov
ring area, there are significant uncertainties on the fraction of photons falling in LG
gaps. This means that the correspondent systematics should be minimized.
On the other hand, figure 3.7 heads to an intrinsic problem in LG efficiency resolution
(comparing with RICH simulation), i.e., there is a granularity problem from consider-
ing the PMT as standard unit of detection. As a matter of fact, figure 3.9(b) marks
clearly a variation in pixel signal within the same PMT. This allows to infer a variation
of the signal according to the kind of pixel, since each one has a different collected
signal, i.e., the number of detected photoelectrons changes with the pixel position
within the PMT. Hence, LG efficiency εLG will also depend on pixel position in PMT (
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xpixel, ypixel).
Following the official AMS pixel numbering (0-15), the division of pixels into types
(see figure 3.8) may be established as:

• Central pixels: numbers 5, 6, 9, 10;

• Side pixels: 1, 2, 4, 7, 8, 11, 13, 14;

• Corner pixels: numbers 0, 3, 12, 15.

(a) (b)

Figure 3.8: a) RICH pixel numbering scheme. b) Pixel classification as central (A), side (B)
and corner (C) types.

(a) (b)

Figure 3.9: a) RICH pixel signal within a PMT. b) Quotient of the number of collected by the
number of expected photoelectrons as function of pixel number (aerogel events).

Furthermore, it is well known that the observed Cherenkov ring patterns are not
infinitely thin (ring width). Such condition comes both from detection limitations
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and from variations in photon emission trajectory, which means an uncertainty in
pixel/PMT detection. Ideally, a radiator with a thickness near zero would have a fixed
emission point for all Cherenkov photons, but particles crossing the radiator will pro-
duce a superposition of slightly offset cones. This fact also points toward a new
approach beyond the simple azimuthal sampling described in the beginning of this
section.
Furthermore, figure 3.9 shows a larger collected signal (S3) for central pixels than
side pixels (S1). From this fact follows that LG detection efficiency changes accord-
ing to the pixel type. As a result, each pixel type should have a different weight to the
Cherenkov ring detection efficiency.
In order to address that situation, a new computational model was implemented so
that a 2-dimensional distribution weighted by the pixel importance could be included
in the LIP algorithm. Hence, this new approach will regard the following three main
principles:

• Ring characterization is based on sampling the ring at regular intervals;

• The ring is treated as a set of probabiblity distributions centered in each sam-
pled point;

• Acceptances and efficiencies are calculated and store for each PMT or pixel
touched by the ring. Global results may be obtained from the addition of all
PMT/pixel contributions.

3.3 Efficiency determination: full ring width approach

3.3.1 Introduction

Ring sampling will depend on radiator properties, reconstructed Cherenkov cone
and ring parameters. Regarding this, photon trajectories are calculated for a number
of points at equally spaced intervals ( see figure 3.11 ) in azimuthal angle (currently
the number of points is 1000, so that they can be separated by shorter distances and
therefore obtaining a better sampling).
Hence, the photon’s trajectory is followed only if it reaches the matrix detection plane.
The new charge reconstruction algorithm, is based on a new approach, ring segmen-
tation, that describes the expected contribution to the Cherenkov ring signal coming
from photons with a specific reflection status at a specific PMT/pixel.
The main goal of ring sampling and smearing calculations is evaluating the contribu-
tion of each PMT/pixel to the global detection efficiency. This results from listing the
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Figure 3.10: Description of Cherenkov ring (red line) width (Rw) within touched PMTs.

ring points and each point contribution to that specific PMT/pixel ( in the next section,
there will be a further description about each point’s contribution).
The implementation of the segment-based approach allows the assignment of a pho-
ton direction to each ring segment.
In further detail, the photon direction stored in each segment is obtained by evaluat-
ing the sampled ring points as follows:

• Since points assigned to a given segment all have the same reflection statu-
sand are mapped near each other, their directions should be quite similar.

• Most of the photons tend to perform angles less than ∼ 50◦ with the PMT ma-
trix’s normal, so an average is applied over the x and y components of each
sampled point trajectory. Each trajectory is weighted by the fraction of each
point’s smeared distribution contributing to that specific segment. As a result,
global x and y components are obtained (plus a downward z component cho-
sen to keep vector length normalized at 1) representing the segment’s average
photon trajectory.

• The final result is stored as part of segment data in the form of two photon
angles θγ and φγ.

3.3.2 Point smearingt 2-D

Point smearing is about including ring width uncertainty, leading to a more precise
calculation of geometrical efficiencies such as the LG one.
Ring width is an effect that emerges from uncertainties in the measured impact point
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Figure 3.11: Ring discretization for a number of points at equally spaced intervals in az-
imuthal angle.

of each ring photon. These variations result from deviations of photon trajectories
from an ideal Cherenkov cone (e.g. radiator chromacity or thickness), but also from
limitations in the detection matrix (e.g. pixel/PMT size).
The ring width may be simulated using the set of points obtained from ring sampling.
Hence, stating the reference point as the one resulting from the expected ring (cen-
tral ring), these uncertainties will result from an isotropic perturbation in longitudinal
and transversal components. Since over small distances (∼ 1cm) the ring is approxi-
mately a straight line, the longitudinal component does not change the ring width and
the point remains on the ring. It follows easily that transverse component produces
the uncertainty in the ring profile.
Under the assumption of isotropy, any pair of perpendicular spreads has the same
magnitude. Point smearing is applied using the RICH detector’s standard x-y axes
(see figure 3.12).
The knowledge of reconstructed AMS rings means that an estimate of the ring’s
transverse spread is well known. This spread is incorporated in the likelihood func-
tion used for LIP’s velocity reconstruction as a composition of two Gaussian distri-
butions (see figure 3.12 ), i.e., a sum of two Gaussian contributions described as
follows for both aerogel and NaF events:

• Aerogel Event :

– Width = 0.374 cm (Contribution:76%);

– Width = 1.348 cm (Contribution:24%).

• NaF Event :

– Width = 0.5424 cm (Contribution:47.23%);
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– Width = 1.35 cm (Contribution:52.77%).

For simplicity reasons, this charge reconstruction method will use a single Gaussian
spread for each point with a width (along each axis) given by the first Gaussian value
used in the likelihood function, i.e., 0.374 cm for aerogel events and 0.5424 cm for
NaF events.

(a)

σ1

σ2

σ3

σ4

aerogel

σ1

σ2

σ3

σ4
NaF

5 cm

(b)

Figure 3.12: a) Ring point sampling and associated uncertainty due to ring width. b) Com-
parison of point smearing distances for aerogel (σ = 0.374cm) and NaF (σ = 0.5424cm) with
the size of detection cells (3.4× 3.4cm).

The main calculation of all efficiencies, apart from the geometrical one, is performed
at the level of ring points. For instance, there are two key efficiencies which are
strongly related with photon trajectory given by:

• the radiator inefficiency due to Rayleigh scattering in aerogel events is esti-
mated from the photon inclination (θγ) and from the tile’s optical clarity;

• photon losses at light guide detection are function of θγ and azimuthal angle
ϕγ, when reaching the detection matrix plane.

As a result, the total efficiency and radiator efficiency are obtained for each sampled
point.
However, as mentioned before, the RICH matrix granularity is given by a pixel/PMT
grid. Therefore, the standard scope to describe efficiency should be an evaluation at
the PMT or pixel level.
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In further detail, each pixel will have a cluster of points (see figure 3.12 ) with differ-
ent contributions (point smearing) to the total pixel efficiency, according to the 2-D
Gaussian probability distribution ( Pi j, where i is a Cherenkov ring point and j is the
pixel number).
Nevertheless, the physical meaning results from summing all the pixel contributions
for reach point i as described in the following expression:

Pi =
1

N0

∑
j

Pi j (3.20)

where N0 is ring total number of points.
The equation 3.20 evaluates the fraction of ring intergrated by each point i. In other
words, ot describes the acceptance of point i belonging to a certain Cherenkov ring.
The next leap would be the introduction of pixel efficiency together with the summa-
tion over all the ring points, described as follows:

εring =
∑
i

∑
j

1

N0

Pi jεj (3.21)

where
εj =

∑
i

(εradεLG)jPi j
1

N0

(3.22)

Moreover, since point smearing is required to evaluate the integrated acceptance
and efficiency in each PMT and pixel, it should follow the next two implementation
steps:

• The integration region of Gaussian smearing is a square;

• The 2-D Gaussian smearing may be obtained as a product of two independent
one-variable Gaussian smearings:

P (x = xj, y = yj) = P (x = xj)P (y = yj);

i = {1, 2, 3, ..., Nseg}, j = {1, 2, 3, ..., Npixel}
(3.23)

In geometrical terms, each PMT/pixel is defined by the conditions (see figure 3.13)

x1 j < xj < x2 j ∧ y1 j < yj < y2 j (3.24)

where the coordinates are considered at the top of LGs and the indexes {i, j} are
self-explained in equation 3.23. In addition, each pixel have an average Cherenkov
photon direction, i.e., the mean value of the cartesian coordinates over all the Cherenkov
photons falling in pixel j. Therefore, it follows a set of coordinates (in RICH frame)
given by:

(xj, yj; θj, φj)
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In order to simplify the notation, the following changes should be considered:

(xj ≡ X, yj ≡ Y ; θj ≡ Θ, φj ≡ Φ)

As a result, the integrated probability over that PMT/pixel of a distribution centered
at point C with coordinates (XC , YC) is given by

PC(X1 < X < X2, Y1 < Y < Y2) = WPX1 < X < X2)P (Y1 < Y < Y2) (3.25)

Since each axis has a probability value corresponding to the integral of the Gaussian
distribution g centered at the point coordinate and regarding the chosen standard in
deviation (see figure 3.13), it follows that:

PxC (X1 < X < X2) =

∫ X2

X1

g(µ = XC , σ) (3.26)

PYC (Y1 < Y < Y2) =

∫ Y2

Y1

g(µ = YC , σ) (3.27)

The Gaussian integral in expression 3.3.2 can be written as

∫ X2

X1

1√
2πσx

e
− 1

2

(
X−XC
σx

)2

dx (3.28)

Applying a change of variable given by

k =
1√
2

(
X −XC

σx

)2

(3.29)

thus equation 3.28 can be expressed as [12]

1√
π

∫ X1−X0√
2σx

X2−X0√
2σx

e−k
2

(3.30)

where it was considered that the differential dX comes from the following expression:

dX = dkσX
√

2

Using a similar procedure to Y feature, equations and can now be written in terms of
the so-called error function Erf(t) as follows:

PXC (X1 < X < X2) =
1

2

[
Er f

(
X2 −XC

σ
√

2

)
− Er f

(
X1 −XC

σ
√

2

)]
(3.31)

PYC (Y1 < Y < Y2) =
1

2

[
Er f

(
Y2 − YC
σ
√

2

)
− Er f

(
Y1 − YC
σ
√

2

)]
(3.32)
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whereas

Erf(t) =
2√
π

∫ t

0

e−k
2

dk (3.33)

Therefore, the fraction of the smeared distribution centered at C falling on that PMT/pixel
is therefore

PC(X1 < X < X2, Y1 < Y < Y2) =

=
1

4

[
Erf

(
X2 −XC

σ
√

2

)
− Erf

(
X1 −XC

σ
√

2

)][
Erf

(
Y2 − YC
σ
√

2

)
− Erf

(
Y1 − YC
σ
√

2

)]
(3.34)

Figure 3.13: Integration of the ring segment points for each each pixel.

Integrated efficiency

The full ring efficiency is easily obtained from adding all pixel contributions and
finally inserting the radiator wall efficiency, which results in following expression:

εring =
1

2πHrad

< εPMT >

Npixel∑
j

Nseg∑
i

(
εLGεWall

)
i

εaccj (3.35)
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whereas εaccj corresponds to each pixel acceptance, given by

εaccj = Rnrefl

∑Nseg
i Pi j∑
i,j Pi j

≡ Rnrefl

∑
i Pi j

Npoint

(3.36)

and εLGj is LG efficiency,
εLGj = εradj Accj (3.37)

Integrated efficiency results

In accordance to the new approach to ring evaluation at the matrix, the precision
of Cherenkov photon detection is studied at the finest segmentation level: pixel size.
This allows to measure with detail the position of photons hitting the PMT matrix, as
well as the partial ring signal resulting from pixel activation.

Figure 3.14: Detailed view by pixel shows higher light collection efficiency for central pixels
in each light guide.

As a result, one of the upgraded features is acceptance, i.e., the geometric effi-
ciency of RICH detector. For events with higher acceptance (see figure 3.15), there
will be a better reconstruction of Cherenkov ring.
On the other hand, the integrated efficiency considering only the radiator will be in-
troduced in each point contribution according to the corresponding photon trajectory.
Describing the photon trajectory as function of angular coordinates (θγ, φγ), it follows
that full efficiency will depend of photon angles for each impact point (see equation
3.35).
Figure 3.15(a) shows the distributions of the full detection efficiency for Carbon
events. It turns out that aerogel distribution peaks at ε ' 0.3, while the NaF dis-
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tribution has a double peak at ε ' 0.09 and ε ' 0.15. This means a higher full
efficiency for aerogel events, which matches the results shown in figure 3.15(b).
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(a)

(b)

Figure 3.15: a) Full efficiency for Carbon events. b) Geometrical acceptance evaluation for
Carbon events.
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4
Monte Carlo simulation of Cherenkov

polarization effect
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4.1 Introduction

The propagation of Cherenkov photons in the three main RICH’s interfaces:

• Radiator interface ( dielectric/air );

• Mirror surface ( metal/air );

• LG surface entrance (air/dielectric).

Since Cherenkov photon is an electromagnetic-wave, it is described by two following
basic properties (see figure 4.1)

• polarization ( aligned with electric field ~E );

• wave-vector ( ~k ).

Combining the two previous key ideas, it turns out that Cherenkov photon transition
between radiator-air will have a non-zero probability of being reflected, depending on
the polarization and wave-vector. In other words, since photon’s reflectance(
R =

∣∣∣∣ ~Er~Ei
∣∣∣∣2 ) crossing a dielectric boundary (radiator interface) is non-zero and

therefore there will probably be significant energy losses. In addition, since the mirror
is coated with an non-perfect conductor, there will also be a non-100% reflectance in
photon reflection.
Therefore, the purpose of this chapter will be the study of the effect of Cherenkov
polarization in energy losses for radiator and mirror surfaces. Hence, the following
topics will be approached:

• Cherenkov Photon’s reflectance/transmittance;

• Evaluation of CK polarization effect.

4.2 Reflectance and Transmittance

From appendix sections A and B it is obtained the wave-vector and polarization
vector for refraction and reflection optics. From this point, the next step towards the
final goal, which is the evaluation of polarization effect in energy loss through the
RICH’s dielectric interfaces, is to study photon reflectance/transmittance as function
of polarization’s main feature: the polarization angle αi for incident, αr for reflected
and αt transmitted waves.
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Figure 4.1: Electric field direction of a Cherenkov photon ( ~E) is defined by its wave-vector
(~kphot) and charged particle direction (~vpart) [14].

In further detail, reflectance is described by the fraction of the total photon energy
lost for the initial medium, which can be represented as

R =
| ~Er(αr)|2

| ~Ei(αi)|2
(4.1)

where αr is the polarization angle of the reflected wave and αi is that of incident
wave. Similarly, transmittance results from the fraction of transmitted photon energy,
described by the following expression:

T =
| ~Et(αt)|2

| ~Ei(αi)|2
(4.2)

R and T are quantities that have a range of values from 0 to 1.
In order to introduce the dependence on polarization, it is first necessary to evalu-
ate the energy per unit of area that flows through the interface carried by incident,
reflected and transmitted fields, which are denoted by Ji, Jr and Jt, respectively.
Hence, it follows that

Jpq = Spq cos(θq); {p =‖,⊥}; {q = i, r, t}[Wm−2] (4.3)

where Spq is the absolute value of the Poynting vector, given by

Spq =
c

4π
| ~Epq × ~Hpq|=

c

4π
EpqHpq =

c

4π

√
εq
µq

(Epq)
2 (4.4)
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since
√
εqEpq =

√
µ
q
Hpq.

Considering the expression 4.3 to obtain irradiance, together with Fresnel reflection
coefficients (B.11-B.12), the derivation of reflectance for both parallel and perpendic-
ular components results immediately from the following equations:

R‖ =
Jr
Ji

=
|E‖r|2

|E‖i|2
= (r‖)

2 (4.5)

R⊥ =
Jr
Ji

=
|E⊥r|2

|E⊥i|2
= (r⊥)2 (4.6)

Using a similar procedure, transmittance is obtained from Fresnel transmission co-
efficients (B.13-B.14) as follows,

T‖ =
J‖t
J‖i

=
n2

n1

µ1

µ2

cos(θt)

cos(θi)
(t‖)

2 (4.7)

T⊥ =
J⊥t
J⊥i

=
n2

n1

µ1

µ2

cos(θt)

cos(θi)
(t⊥)2 (4.8)

From the combination of expression 4.3 with 4.4, a simple expression for total energy
flowing in a interface may be written as

Jpi =
c

4π
|Epi|2

√
ε1
µ1

cos(θi) (4.9)

which can be separated in parallel and perpendicular components as follows,

J‖i =
c

4π
|E‖i|2

√
ε1
µ1

cos(θi) =
c

4π

√
ε1
µ1

cos(θi)|Ei|2sin2(αi) (4.10)

J⊥i =
c

4π
|E⊥i|2

√
ε1
µ1

cos(θi) =
c

4π

√
ε1
µ1

cos(θi)|Ei|2cos2(αi) (4.11)

using the expression given by B.7.
Following this path, since the total incident energy flow may be rewritten as

Ji = cos(θi)
c

4π

√
ε1
µ1

|Ei|2 (4.12)

then 4.10 and 4.11 may have a new representation given by

J‖i = Ji sin
2(αi) (4.13)

J⊥i = Ji cos2(αi) (4.14)

Therefore, it becomes clear that

R =
Jr
Ji

=
J‖r + J⊥r

Ji
=
J‖r
J‖i

sin2(αi) +
J⊥r
J⊥i

cos2(αi) (4.15)
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which shows that the reflectance dependence on incident polarization angle αi is
more simply described by

R(αi) = R‖ sin2(αi) +R⊥ cos2(αi) (4.16)

and conversely transmittance is described by

T = T‖ sin2(αi) + T⊥ cos2(αi) (4.17)

(a) (b)

(c)

Figure 4.2: a) 3-D scheme of RICH detector. b)2-D scheme of Cherenkov propagation
crossing the radiator boundary and being refracted (1). c) 2-D scheme of Cherenkov photon
propagation being reflected at mirror (2).

Unpolarized light

For unpolarized light, ~E varies very rapidly in an arbitrary or irregular manner,
which means that no particular direction is given preference. Therefore, the over-
all reflectance R comes from averaging over all directions α. Considering that the
average value of both sin2(α) and cos2(α) is 1

2
, it follows from 4.12 that

J‖i = Jicos2(αi) = J⊥i = Jisin
2(αi) =

1

2
Ji (4.18)
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Similarly, the reflected components are given by

J‖r =
J‖r

J‖i
J‖i =

J‖r

J‖i

1

2
Ji =

1

2
r2
‖Ji (4.19)

J⊥r =
J⊥r

J⊥i

1

2
Ji =

1

2
r2
⊥Ji (4.20)

The average reflectance is given by

R =
Jr

J i
=
J‖r + J⊥r

J i
=

J‖r

2J‖i
+

J⊥r

2J⊥i
=

1

2
(r2
‖ + r2

⊥) (4.21)

Similarly, the average transmittance is expressed as

T =
1

2
(t2‖ + t2⊥) (4.22)

4.2.1 Mirror reflection

The RICH’s mirror is coated with a conductor metal (aluminium) over a substract
of silica (SiO2). Given the material finite conductivity σ there will be energy losses
in the media. Since the electromagnetic is considered for simplicity a complex wave
function, thereby the photon energy absorption will be mathematically described by
a complex refractive index value as follows [19]:

nm =

√
1 + i

(
σ

ε0ω

)
= nR + inI (4.23)

=⇒ n2
m = 1 + i

(
σ

ε0ω

)
= n2

R − n2
I + i2nRnI (4.24)

where nI is the imaginary part and nR corresponds to the real part.
Solving for the real and imaginary components, it follows that

n2
R − n2

I = 1 (4.25)

2nRnI =
σ

ε0ω
=⇒ nR =

σ

2ε0ωnI
(4.26)

which leads to

n4
I − n2

I −
(

σ

2ε0ω

)2

= 0 (4.27)

Hence, it can be obtained from the quadratic equation 4.27 that

n2
I =

1±

√
1 + 4

(
σ

2ε0ω

)2

2
=⇒ n2

I =

1 +

√
1 + 4

(
σ

2ε0ω

)2

2
(4.28)
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Since nI is a real number, the positive solution must be chosen.
Inserting the complex refractive index back into the electric field expression given by
(4.26), it follows easily that

~E(~x, t) = ~E0e
(~k·~x−wt) (4.29)

= ~E0e
i(nR+inI)ω

c
(~uk·~x)−iωt (4.30)

= ~E0

Oscillatory term︷ ︸︸ ︷
eiω(

nR
c
~uk·~x−t)

Absorption term︷ ︸︸ ︷
e−

nIω

c
~uk·~x (4.31)

The first exponential term basically describes an electromagnetic wave that propa-
gates with a velocity of c/nR.The second one leads to photon absorption in metals
due to inducing a current in the medium. As a result, there will be a decline of ir-
radiance ( I [W/m2] ) as the wave propagates through the medium, i.e., the photon
energy lost per unit of area, which is described by following expression:

I = ~E · ~E∗ = ~E0 · ~E∗0e−
2nIω(~uk·~x)

c (4.32)

= I0e
− 2nIω(~uk·~x)

c = I0e
−δ(~uk·~x) (4.33)

whereas the absorption coefficient is defined as

δ =
2nIω

c
=

4πnI
λ

(4.34)

The reflectance from metals comes from the imaginary part nI of the refractive index,
which regards the electromagnetic wave energy losses in the metal. Hence, the
global picture comes out when nm is plugged into the Fresnel reflection coefficients
(B.11-B.12) as follows:

r⊥mirr =
cos θi −

√
n2
m − sin2(θi)

cos θi +
√
n2
m − sin2(θi)

(4.35)

r‖mirr =
−n2

m cos(θi) +
√
n2
m − sin2(θi)

n2
m cos θi +

√
n2
m − sin2(θi)

(4.36)

Replacing expression (4.24) in (4.35-??), the reflection coefficients at mirror are
given by

r⊥mirr =
cos θi −

√
(n2

R − n2
I − sin2(θi)) + i(2nRnI)

cos(θi) +
√

(n2
R − n2

I − sin2(θi)) + i(2nRnI)
(4.37)

r‖mirr =
−((n2

R − n2
I) + i(2nRnI)) cos θi +

√
(n2

R − n2
I − sin2(θi)) + i(2nRnI)

((n2
R − n2

I) + i(2nRnI)) cos(θi) +
√

(n2
R − n2

I − sin2(θi)) + i(2nRnI)
(4.38)
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From expression (4.41-4.42) follows that Fresnel reflection coefficients will have a
complex component.
Therefore, the conventional geometrical interpretation for non-dissipative media, where
the reflection coefficients are real. Instead, a new approach should be taken by con-
sidering complex component is due to photon energy loss in the boundary interface
of the conductor. In further detail, the idea behind the complex refractive index de-
rives from the complex-valued wave vector, e.g., ~k = ~β − i~α, which shows that the
angle of refraction becomes complex-valued (since ~k ∝ 1

λ
~uk). The physics is thereby

obtained through the square absolute value of (4.41-4.42), which basically repre-
sents the energy flux ratio of incident and reflected waves. Similarly to expressions
(4.5-4.6), it follows

R⊥mirr = |r⊥mirr|2 (4.39)

R‖mirr = |r‖mirr|2 (4.40)

where |r⊥mirr|2 and |r‖mirr|2 are given by:

|r⊥mirr|2 =
| cos(θi)− xR|2 + |xI |2

| cos(θi) + xR|2 + |xI |2
(4.41)

|r‖mirr|2 =
|(n2

I − n2
R) cos(θi) + xR|2 + | − 2nRnI cos(θi) + xI |2

|(n2
R − n2

I) cos(θi) + xR|2 + | − 2nRnI cos(θi) + xI |2
(4.42)

Using the expression (4.16) to determine the polarized reflectance at the mirror, it
results that

Rmirr = |r⊥mirr|2 cos2(αmirr) + |r‖mirr|2 sin2(αmirr) (4.43)

where αmirr is the angle between the polarization vector of incident photons and the
normal to the mirror surface (see Figure B.2). For instance, expression for unpolar-
ized reflectance is given by

Rmirr =
|r⊥mirr|2 + |r‖mirr|2

2
(4.44)

In order to apply this procedure to AMS-02 events, it is necessary to find the two key
parameters: nI and nR. To obtain these results, it is necessary to solve quadratic
equation 4.43 in order to obtain nI and nR. Following this path, becomes essential
to performe an approximation where the photon wavelength has a fixed value at
λ = 420 nm, since reflectance is almost independent of this variable. Following this,
the only free parameter is the mirror conductivity σ, which according to the previous
basic ideas is evaluated as σ = 1.638.107S/m. From this last statement and from
expression (4.28) follows that nI and nR are given, respectively, by

nI ' 25.46 (4.45)

nR ' 50.88 (4.46)
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Finally, regarding results obtained from expressions (4.45-4.46), the functions for
unpolarized and polarized reflectance resulting from expressions (4.44) and (4.43),
respectively, are plotted as function photon incident angle at the mirror (θmirr) in
figure 4.3.

(a) (b)

Figure 4.3: a) Dependence of unpolarized reflectance at mirror on incident theta at mir-
ror θmirr. b)Dependence of polarized reflectance at mirror on incident photon’s polarization
angle at mirror αmirr[21].

4.3 Implication of Cherenkov polarization on efficiency

In section (4.2), the main processes and features of CK photon energy loss due
to polarization effect were described. From this point, the next step is evaluating the
effect according to the RICH geometry and material properties such as aerogel/NaF
radiators (nindex ∈ {1.050, 1.334}) or mirror surface.
Following this path, there will be two main photon interactions listed as follows (see
figures 4.2(b) and 4.2(c)):

• Refraction at the radiator-air boundary;

• Reflection at the mirror.

Since each interface corresponds to an energy loss factor for each Cherenkov pho-
ton (indexed by the letter i) according to its polarization, it is necessary to evaluate
the size of the effect. Therefore, the transmittance at radiator (NaF/aerogel) T radi

and reflectance at mirror Rmirr
i should be evaluated. Putting together both effects,
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the expression describing Cherenkov polarization correction factor for each photon
follows:

εceri =
T radi Rmirr

i

R0
mirr

(4.47)

Since the current LIP algorithm only regards a reflectance independent of photon in-
cident and polarization angle at mirror, the CK polarization correction will be applied
over the reference value R0

mirr = 0.85.
In addition, another motivation factor to study the Cherenkov polarization effect comes
from the photon resolution detection upgrade at PMT matrix through the implemen-
tation of a new computational model (this procedure is described in chapter 3).
This new feature allows to deepen the study about photon intrinsic properties such
as Cherenkov polarization.
On the other hand, Cherenkov photon’s incident angle in the radiator (see appendix
section A) depends on the charged particle’s incident angle θpart (figure 4.4), which
means that polarization angle α will also be modified, leading to T radi and Rmirr

i trans-
formation (see section 4.2). For this reason, Cherenkov polarization efficiency εcer

may be correlated with θpart.
Therefore, the study of Cherenkov polarization effect will include the following topics:

• εceri dependence on θpart (see figure 4.5(a) and 4.5(b), respectively);

• Study the average Cherenkov efficiency within steps of θpart = 1.25◦ (within the
RICH acceptance);

• Get the dispersion of Cherenkov factor (σεcer ) for last topic distributions;

• Correlation between σεcer and θpart (particle incidence angle distribution is shown
in figure 4.4, respectively).

4.3.1 Dependence with the charged particle’s incident angle

In order to estimate the Cherenkov polarization effect, a Monte Carlo simulation
was developed, where 106 charged particles were generated within RICH accep-
tance. Each particle will generate a Cherenkov ring of 360 equally spaced photons
along the azimuthal angle (ϕ) in its reference frame (i.e., one Cherenkov photon per
degree). Adding these facts to the consideration in the beginning of the section, the
first step is evaluating the Cherenkov polarization factor (εcer) dependence on the
charged particle’s incidence angle (θpart). In further detail, looking at aerogel events
(figure 4.5(a)), there are two featured regions εcer variations, described as follows:
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Figure 4.4: Charged particle’s incident angle θpart distribution for RICH reconstructed events.

• within the θpart region from 00 to 250, there is a tail-like curve describing a
Cherenkov efficiency variation from ∼ 0.82 to ∼ 0.98;

• zooming over the region εcer ∈ [0.86, 0.98] (see figure 4.6(a)), a variation through
all θpart range can be seen.

On the other hand, in NaF events (figure 4.5(b)), there are three main regions to
study, as follows:

• a variation of εcer following a curve going upwards from 0.6 to 0.98, within the
θpart ∈ [1, 5]0 region;

• there is also a remarked change of Cherenkov factor from 0.94 to approximetaly
0.97, for θpart ∈ [15, 30]0;

• looking at θpart ∈ [5, 35]0 there is a second profiled region for Cherenkov factor
values between 0.96 and 0.99.

From this point, it is safe to state the following conclusion: Cherenkov polarization
factor εcer depends on incident charged particle angle θpart. The Cherenkov factor
should, then, be studied for several different values of θpart. For this purpose, the
particle’s theta spectrum was divided into θpart = 1.250 size slices.
Applying the projection over θpart variable for both NaF and Aerogel events, a profile
distribution in εcer variable is obtained. For instance, choosing a θpart range within
the range [5.00, 6.25]0, the resulting projection is given by figure 4.7. Regarding figure
(4.7), there are obvious features for both aerogel and NaF events:

• spreading tails;
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(a)

(b)

Figure 4.5: Dependence of εcer on θpart for aerogel (a) and NaF (b) events.

• double peaks.

The two behaviours described before may be understood by decoupling the mirror
and radiator effects. Similarly to total effect factor, reflectance at mirror and transmit-
tance at radiator will have a θpart dependence. Therefore, a Trad(θpart) andRmirr(θpart)

projection distribution should be obtained for every θpart slice (figure 4.8(a) and 4.8(b)
shows the a projection distribution for θpart = [5.00, 6.25]◦, respectively). From figures
4.8(a) and 4.8(b), respectively, it follows that RMirr distribution has a large width
for both aerogel and NaF events. Conversely, Trad distribution is narrow for aerogel
events and it spreads for NaF events.
Although, in order to have a deep understanding of both effects is necessary to evalu-
ate the following statistical measurements resulting from figures (4.8(b)) and (4.8(a)),
respectively:

• Distribution width (σTrad/σRmirr);
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(a)

(b)

Figure 4.6: Dependence of εcer (εcer ∈ [0.86, 1.]) on θpart for aerogel (a) and NaF (b) events.

• Distribution average(< Trad > / < Rmirr >) for every θpart.

The comprehension of reflectance at mirror effect relies on the study of the two fol-
lowing features:

• Ratio of distribution width σRMirr
(θpart) by average mirror reflectance distribution

< RMirror >

(
σRMirr

<RMirror>

)
;

• Average value < RMirror > (θpart).

Regarding aerogel events with photons in the mirror, the probability of hitting the
mirror increases for larger incident angles at mirror (see figure 2.16), where the pho-
ton reflectance suffers a deep variation (see figure 4.3). In addition, reflectance
also changes more significantly for larger θmirr due to the lower aerogel’s refractive
index value, i.e., the angle resulting from refraction is similar to the incident one
(θi ' θrefrac).
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Figure 4.7: εcer distribution for particles with polar angles in the range [5, 6.25]0 impacting in
aerogel and NaF radiators.

In further detail, figure 4.9(b) shows the mean reflectance at mirror value per parti-
cle’s polar angle range center, i.e., for a slice of θpart ∈ [1.25, 2.5]◦ the center is given
by θpart = 1.25+2.5

2
' 1.875◦ (for both aerogel and NaF radiators, respectively). For in-

stance, for aerogel events the average RMirr grows from 0.5 to 0.82 within a particle’s
polar angle range [0, 25]◦, while for NaF events the value is approximately constant
and equal to RMirr ' 0.82. Although, the final conclusion about mirror effect comes
from the relative error σRMirr

<RMirror>
as function of the particle polar angle, described in

figure 4.9(a). The figure analysis allows to state:

• Evaluating the aerogel events, the relative error grows linearly with particle’s
polar angle until 16% (θpart ' 7.25◦) and decreases to a minimum of 7% at
θpart ' 28.75◦, where it remains constant at σRMirr

<RMirror>
= 7% for the rest of

θpart range. From this data together with plot 4.9(b) which shows the mirror
reflectance as function of the polar angle fir aerogel and NaF simulated events,
it is possible to conclude that systematic error is more significant within the
following particle’s theta range: θpart = [2.5, 29]◦. Particle’s theta spectrum,
shown in figure 4.4 is more populated in the region around 200. Furthermore,
figures 2.16(a) and 4.3(a) strengthen the idea of great variations in reflectance
at mirror for aerogel events.

• Since < RMirr >' 82% for all the particle’s theta range for NaF events, there-
fore from figure 4.9(a) is clear the growth of systematic error linearly with parti-
cle’s theta, for θpart < 30◦, to a maximum of ∼ 12%.

Similarly to mirror effect study, for the transmittance at radiator factor there are
two essential plots to consider: transmittance relative error σTRad

<TRad>
(θpart) at radia-

tor; mean transmittance at radiator < TRad(θpart) >. From figure 4.11(b) it can be
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(a)

(b)

Figure 4.8: a) Distribution for reflectance at mirror θpart ∈ [5.00, 6.25]0. b) Schema of charged
particle (dashed line) emission of Cherekov photons (yellow line), which are being propa-
gated to the mirror.
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(a)

(b)

Figure 4.9: a) σRMirr
<RMirror>

versus particle polar angle (θpart). b) Mean reflectance < RMir >
versus particle polar angle (θpart).

seen that NaF events have a much larger variation of < TRad > than aerogel events.
Nevertheless, in order to evaluate the size of Cherenkov polarization effect at radi-
ator, the next step is evaluating the relative error σTRad

<TRad>
as function of the particle’s

incidence angle θpart.Thus, the observation of figure 4.11(a) gives three additional
informations about the radiator effect, described as follows:

• The fluctuation of relative error for aerogel events (∼ 0.5%) has no statistical
relevance. In addition, since the average transmittance at aerogel exit is ap-
proximately constant through the particle’s polar angle spectrum, the system-
atic error has a small relative importance.

• In NaF events, there is a relative error variation from 3.5% to 1.1% within θpart ∈
[0◦, 8◦], which is an effect of the average transmittance at radiator< Trad(θpart) >

value oscillation. For θpart > 18◦ the NaF radiator effect loses the importance
with σTRad

<TRad>
< 1%.
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Figure 4.10: Distribution of transmittance at radiator for θpart ∈ [5.00, 6.25]◦.

• Figure 4.11(b) shows the radiator transmittance has relevance for NaF events
having θpart < 18◦.

(a)

(b)

Figure 4.11: a)
σTRad
<TRad>

versus θpart. b) < TRad > versus θpart.

After studying both radiator and mirror effects separately, the next step is evaluating
the behaviour of the integrated result (see expression 4.47) as function of particle
incidence angle. Repeating the radiator/mirror effect analysis, figures 4.12(a) and
4.12(b) are obtained, showing an estimation of Cherenkov polarization average effect
for aerogel and sodium fluoride events, respectively.
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For instance, in the aerogel case, there is now an explanation for the declining of
Cherenkov polarization efficiency < εcer > for particle polar angle angles greater
than 20◦, which results from the variation of reflectance at mirror.
On the other hand, in the NaF case approach to < εcer > behaviour is completely
different, since the bump within the range θpart ∈ [2.5, 10.0]◦ is due to Trad oscillation.
Furthermore, the reduction for θpart > 10◦ is also due to the reduction in radiator
transmittance.

Finally, the evaluation of total polarization effect results from studying the relative

(a)

(b)

Figure 4.12: Mean Cherenkov factor value (< εcer >) as function of charged particle polar
angle θpart for aerogel (a) and NaF (b) events.

systematic error of the Cherenkov polarization factor, i.e., the ratio between σεcer and
< εcer >. The Cherenkov polarization effect was only considered just for polarization
factor. However, the other two possibilities, described as follows,

• The unpolarized effect (which does not depend on polarization angle) depend-
ing on particle polar angle θpart ;

• The expected correction relating efficiency factor for polarization and unpolar-
ized case according to the following expression: εPOLcer

εUNPOLcer
.

were also studied as an academic purpose. Figure 4.14 describes the relative error
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(a)

(b)

Figure 4.13: a) Cherenkov polarization factor σεcer versus θpart (aerogel events). b) σεcer
versus θpart (NaF events)
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σεcer
<εcer>

for both aerogel and NaF events as function of particle polar angle θpart. The
magnitude of Cherenkov polarization effect can be obtained from figure 4.14 and
three main conclusions follow:

• The relative error for aerogel events is approximately 3% for θpart ∈ [0◦, 5◦] and
θpart ∈ [30, 35]◦. For others parts of the particle polar angle θpart spectrum,
σεcer
<εcer>

' 2%.

• Regarding relative error for NaF events, the value is nearly constant over all
particle’s polar angle range and equal to ∼ 2.5%.

• The effect will be sizable and about 3% for aerogel events within certain particle
polar angle θpart regions (see figure 4.4). On the other hand, for NaF events
the effect will also be significant and about 2.5% for the whole θpart domain.

Figure 4.14: σεcer
<εcer>

versus θpart for aerogel and NaF events.
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5
Cherenkov polarization bias in RICH

charge reconstruction
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5.1 Introduction to Cherenkov polarization effect in
RICH ring efficiency

The procedure to insert Cherenkov polarization factor in charge reconstruction
follows a similar procedure as refered in section 3.3, whereas the ring efficiency
results from the factorization of several effects such as Rayleigh scattering at radiator
or LG signal collection. These known effects are described by expression 3.35, which
depends on pixel types (see figure 3.8).
On the other hand, as mentioned in section 4.3, the transmittance at radiator and
reflectance at mirror, according to the LIP algorithm, are described as follows:

T
(0)
Rad =

{
1 , radiator − air
0 , otherwise

(5.1)

R
(0)
Mirr =

{
0.85 , reflected photon

1 , direct photon
(5.2)

This results in a slightly different for ring efficiency, given by:

εring(0) =
1

2πHrad

< εPMT > T
(0)
Rad

Npixel∑
j

Nseg∑
i

(
εLGεWall

)
i

εaccj (5.3)

Then, in order to add the CK polarization effect, it is just necessary to replace ex-
pressions (5.1) and (5.2) by the equations (4.17) and (4.43), respectively. In further
detail, the inclusion of the previous terms will be evaluated pixel by pixel, i.e., since
each pixel will detect photon with different incident angle, this means the reflectance
at mirror and transmittance at radiator will change their value. As a result, the ring
efficiency after applying the Cherenkov polarization effect is given by:

εring(1) =
1

2πHrad

< εPMT >

Npixel∑
j

Npoint∑
i

(
εLGεWall

)
j

εaccj T
(1)
Rad j (5.4)

where

εaccj =

∑Nseg
i Pi j∑
i,j Pi j

(R
(1)
Mirr j)

nrefl ≡ Rnrefl

∑
i Pi j

Npoint

(R
(1)
Mirr j)

nrefl (5.5)

and R
(1)
Mirr j/T

(1)
Rad j correspond to the replacements of expressions (5.2) and (5.1),

respectively.

5.2 Charge correction by CK polarization factor

In this section, the CKfactor correction on RICH charge reconstruction will be
studied. The following topics will be covered:
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• Presentation of the following concepts: Time-Dependent and Time-Independent
correction;

• Evaluation of RICH charge (Z) distribution peaks resulting from RICH charge
reconstruction;

• Study of charge peak width (σZ) and systematic error.

5.2.1 Charge calculation

Given the ring’s full efficiency result for the event, the total ring signal as shown
in figure 5.1 (i.e. the sum of signals npe(k) for all k hits tagged as being part of
the CK ring), the particle’s velocity β and its incident angle θpart (which determines
the traversed radiator length), the particle charge Z is obtained from the following
expression:

Z2
(1) =

(
β2n2 − 1

β2n2 − β2

cos(θpart)

N0

)2∑Nhits
k=1 n

(1)
pe (k)

εring(1) (event)
(5.6)

where εring(1) is the Cherenkov polarization efficiency correction (see equation 5.4)
and N0 is the global charge normalization factor, defined as the expected number of
visible photons for an idealized event with perpendicular incidence, β = 1 and Z = 1,
having no loss of light from emission to the PMT window and falling on an idealized
matrix with no dead areas.
For convenience, expression 5.6 may be rewritten as follows:

Z2
(1) = N2(β, θpart)

∑Nhitsn
(1)
pe (k)

k=1

εring(1) (event)
(5.7)

where
N(β, θpart) =

β2n2 − 1

β2n2 − β2

cos(θpart)

N0

(5.8)

Similarly, the expression describing charge calculation with the current LIP algorithm
can be written as

Z2
(0) = N2(β, θpart)

∑Nhitsn
(0)
pe (k)

k=1

εring(0) (event)
(5.9)

On the other hand, since the charge is being reconstructed using the RICH detec-
tor, it can also be described by the ratio between detected and collected sinal at
PMT/pixel matrix as follows:

Z2
(0) =

Ndet
pe

N
exp(0)
pe

(5.10)

Z2
(1) =

Ndet
pe

N
exp(1)
pe

(5.11)
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Therefore, comparing 5.7 and 5.9 with 5.11 and 5.10, respectively, the ring signal is
now described by the following expressions:

N exp(0)
pe = N(β, θpart)ε

ring
(0) (5.12)

N exp(1)
pe = N(β, θpart)ε

ring
(1) (5.13)

Combining expressions 5.12 and 5.13, the RICH charge expression, after applying
the Cherenkov polarization factor, is given by:

Z2
(1) = Z2

(0)

εring(0)

εring(1)

(5.14)

In the next section, charge reconstruction will be performed, using RICH/AMS-02

Figure 5.1: Ring signal for aerogel and NaF events.

data. Before taking this step, there are two fundamental concepts about the correc-
tion type applied by the LIP algorithm that should be addressed:

• Time-indepedent corrections;

• Time-dependent corrections.

Time-independent corrections include the following contributions:

• Efficiency and gain correction factor for each PMT;

• LIP efficiency corrections as function of pixel type and of photon incidence an-
gles;

• Cherenkov polarization correction.
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On the other hand, time-dependent corrections include the following effects:

• Efficiency and gain correction factors for each PMT/run. In further detail, the
PMT gain decreases as temperature increases (LIP estimate: ring signal is
reduced by 0.8%-0.9% per 0C).

5.2.2 Charge reconstruction results

From the ∼ 15.8× 106 aerogel events in the reconstructed data sample, ∼ 3.74×
106 events (23.7%) passed all quality cuts (see appendix C) and were therefore con-
sidered for the final data quality evaluation.
From the resulting RICH selected data, it is possible to obtain charge spectrum ac-
cording to the expression (5.14). Although, in order to study the charge resolution
bias resulting from Cherenkov polarization effect, it is required to isolate the charge
distribution peaks. However, due to RICH’s geometry and design there are some
loss factors (see chapter 3), which leads to a larger charge peak and there is an
overlap for charges greater 1. For this reason, an external charge selection is re-
quired to obtain the RICH’s charge resolution.
Since the AMS-02 Tracker sub-detector provides a good charge resolution (from fig-
ure 5.2(b) follows that:σZtracker

Ztracker
' 2%), it was choosen to help separating RICH’s

reconstructed charge peaks.
The next step is, then, obtaining the correlation between Ztracker and RICH’s recon-
structed charge ZRICH (see figure 5.2(a)). Hence, applying a projection of the two
dimensional plot ZtrackerV sZRICH into x − axis, it results the distribution of RICH
charge (see figure 5.4). After obtaining the reconstructed RICH charge peaks, the
charge uncertainty measurement, given by the distribution width (σZ), should be ob-
tained. The first half of the process includes shifting the charge peak center through
a distinct scale factor for aerogel and NaF events (see figure 5.3). Afterwards, a dou-
ble Gaussian fit was performed for each ZRICH peak distribution for aerogel events
(since the charge resolution is better than NaF events), which is illustrated in figure
5.4. On the other hand, the reconstruction of RICH charge algorithm (see chapter
3) has been improving charge resolution, i.e., reduce the systematic error resulting
from the detector ( in the next subsection there will be a further description of this
feature) through several corrections ( e.g. LG detection). Adding to this, it follows the
final goals of this master thesis: study Cherenkov polarization bias on the LIP/RICH
charge reconstruction, as described in subsection 5.2.1.

73



5.2.3 Charge reconstruction results: fitting parameters

Since the σZ can already be obtained, the next step is finding the dependence
on the particle’s expected charge. In further detail, if there were any energy losses
or absorption during the Cherenkov photons propagation trough RICH detector, then
the total charge error σZ would be only constrainted by the fraction of photons being
detected, i.e., it would be a statistical problem (σZ ' σstatZ ). Although, the RICH
detector, as any other Cherenkov radiation detector, it has some uncertainties, which
will constrain the charge Z measurements (so-called systematic errors), described
as follows:

• non-uniformities at the radiator level from spatial variations in the refractive
index, tile thickness and clarity;

• non-uniformity in photon detection efficiency, which is represented as a global
factor evaluated mainly by the PMT gain variation due to temperature effects.

• non-uniformity in the LG properties (e.g: material, geometry, etc) and the opti-
cal coupling between LG and PMT;

• intrinsic photon properties (e.g. Cherenkov polarization).

Therefore, the charge measurement total error σZ is described by two distinct terms:

• the statistical term is independent of the electric charge and depends essen-
tially on the Cherenkov signal detected for singly charged particles (N0) and on
the resolution of the single photo-electron σpe;

• the systematic term increases with Z and dominates for higher charges.

Thereby, spanning the total error σZ in statistical (σstatZ ) and systematic error (σsysZ ), it
follows then [13]:

σZ =
1

2

√
(σstatZ )2 + (σsysZ )2Z2 (5.15)

In further detail, expression 5.15 can be written as [13]:

σZ =
1

2

√
1 + σpe
N0

+

(
δN

N

)2

Z2 (5.16)

From the expression (5.16), the fit function (see figures 5.5(a) and 5.5(b)) is obtained
for Aerogel and NaF events, respectively. The resulting parameters describe the
systematic error and statistical error, as follows from tables (5.1- 5.4). Since the
statistical error is easily minimized by the AMS statistic, the core of the RICH charge
study will rely on systematic error. From this guideline, the analysis of systematic
error for aerogel events can be described as follows:
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• For the current LIP algorithm, geometrical acceptance is greater than 40%. Re-
garding this acceptance range, the systematic error, after applying the Cherenkov
polarization effect, will suffer a small variation (see table 5.1), i.e., it is within
the range covered by the parameter error.

• On one hand, this could result from the contamination by low acceptance rings.
On the other hand, the Cherenkov polarization effect increases with the number
of photons per ring.

• The table 5.2 shows precisely a relative systematic error reduction ∼ 2%, for a
geometrical acceptance greater than 70%.

The charge systematic error behaviour for NaF events suffers a relative variation
∼ 3% for a geometrical acceptance greater than 40% and ∼ 4% for a geometrical
acceptance greater thant 70%.
These results are a great accomplishment for RICH charge reconstruction and it can
lead to clue about new corrections regarding Cherenkov photons intrinsic properties.

Initial correction Polarization correction Final
σstatZ 0.2864± 0.0013 0.2869± 0.0013 0.2869± 0.0013
σsysZ (%) 2.503± 0.038 2.502± 0.040 2.502± 0.040

Table 5.1: Extrapolation of fitting parameters from σZ(Z) plot for a geometrical acceptance
> 0.40 (aerogel events).

Initial correction Polarization correction Final
σstatZ 0.2795± 0.0014 0.2792± 0.0015 0.2792± 0.0015
σsysZ (%) 2.371± 0.045 2.323± 0.046 2.323± 0.046

Table 5.2: Extrapolation of fitting parameters from σZ(Z) plot for a geometrical acceptance
> 0.70 (aerogel events).

Initial correction Polarization correction Final
σstatZ 0.3734± 0.0078 0.3807± 0.0079 0.3807± 0.0079
σsysZ (%) 4.051± 0.1901 3.907± 0.197 3.907± 0.197

Table 5.3: Extrapolation of fitting parameters from σZ(Z) plot for a geometrical acceptance
> 0.40 (NaF events).
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Initial correction Polarization correction Final
σstatZ 0.3762± 0.0078 0.3738± 0.0079 0.3807± 0.0079
σsysZ (%) 4.029± 0.1948 3.881± 0.199 3.881± 0.199

Table 5.4: Extrapolation of fitting parameters from σZ(Z) plot for a geometrical acceptance
> 0.70 (NaF events).

(a)

(b)

Figure 5.2: a) b) Charge spectra resulting from AMS-02/Tracker sub-detector. b) Tracker
charge (Ztracker) Vs RICH reconstructed charge (ZRICH ) for aerogel events.
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Figure 5.3: Ratio between mean charge value for each RICH charge peak (Z ′) and expected
charge Z.

Figure 5.4: Distribution of RICH charge within the range Z ∈ [3, 10] (aerogel events).
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(a)

(b)

Figure 5.5: Results obtained for charge resolution σZ as function of particle charge Z
before and after applying Cherenkov polarization. For aerogel events (a), points for Z =
3, 4, 5, 6, 8, 10, 26 were obtained. However, for NaF events (b) , only points Z = 3, 4, 5, 6, 8, 10
were obtained, since the resolution for Z = 26 has not a good performance.
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A
Cherenkov photon: Wave vector
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Reflected wave

Figure A.1 shows a photon arriving at a planar interface and bouncing off.
The angle between the surface normal, marked ~N , and the direction of the incident
ray, marked ~I, is called the angle of incidence, which is here denoted by θi. Given ~N

and ~I the reflected ray ~R will easily follow.
There are two key physical laws that will be useful to find ~R. The first is that the
incident ray, the interface normal, and the reflected ray all lie in the same plane; thus
the reflected ray is a linear combination of the incident ray and the normal. The
second principle is that the angle of incidence is equal to the angle of reflection.
From these two laws, the following mathematical expressions can be written:

~R = α1
~I + α2

~N (A.1)

θi = θr (A.2)

From the observation of figure A.1 it is clear that cos(θi) = −~I · ~N . Regarding this,
the relation cos(θr) = ~N · ~R is trivial. Rewriting the expression A.1 as:

cos(θi) = cos(θr) (A.3)

−~I · ~N = ~N · (α1
~I + α2

~N) (A.4)

= α1
~N · ~I + α2

~N · ~N (A.5)

= α1
~N · ~I + α2 (A.6)

The last expression results from | ~N |=1 ( ~N · ~N = 1). Since the parameter α1 can be
chosen arbitrarily as 1, then it follows that

β = −2( ~N · ~I) (A.7)

Thus the complete formula for the direction of reflected ray is

~R = ~I − 2( ~N · ~I) (A.8)

where

• ~I is the incident ray;

• ~N is the surface normal;

• ~R is the reflected ray.
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In order to check that ~R is a unitary vector, it is necessary to confirm that ~R · ~R = 1.
Then,

~R · ~R = (α1
~I + α2

~N) · (α1
~I + α2

~N) (A.9)

= α2
1 + 2α1α2(~I · ~N) + α2

2 (A.10)

= 1 + 2[−2( ~N · ~I)( ~N · ~I)] + [−2 ~N · ~I]2 (A.11)

= 1 (A.12)

Finally, it is always necessary to check if incident and normal vectors ~I and ~N are
normalized.

Figure A.1: The geometry of reflection.

Refracted wave

The formula for the transmitted ray can be derived with the help of figure A.2.

Figure A.2: The geometry of photon transmission.
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The two underlying physical laws are that the transmitted ray is coplanar with
the incident ray and the normal and Snell’s Law.These laws are mathematically de-
scribed respectively by:

~T = β1
~I + β2

~N (A.13)
sin θt
sin θi

=
ni
nt

(A.14)

From expressions (A.13-A.14) and considering that ~I and ~N are unitary, it follows
that

~I · ~T = β1 + β2( ~N · ~I) =⇒ cos(θt − θi) = β1 + β2 cos(π − θi) (A.15)
~T · ~N = β1(~I · ~N) + β2 =⇒ cos(π − θt) = β1 cos(π − θi) + β2 (A.16)

Solving equations (A.15-A.16) for variables β1 and β2, it follows that

β1 =
sin(θt)

sin(θi)
(A.17)

β2 =
sin(θt − θi)

sin(θi)
(A.18)

(A.19)

Thus the final formula for ~T is

~T =

[
sin(θt)

sin(θi)

]
~I +

[
sin(θt − θi)

sin(θi)

]
~N (A.20)
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B
Cherenkov polarization and Fresnel

equations
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Polarization

CK radiation is a plane electromagnetic wave, which means that both electric
field ~E and magnetic field ~B are normal to the propagation direction ~k. The CK

Figure B.1: CK light polarization vector. The electric vector ~E lies in the plane defined by
the particle direction and the photon direction.

polarization vector is cointained in the plane defined by the particle’s momentum
vector and photon wave vector, as shown in figure B.2.
Even though there is a constraint in electric field direction, it can always be depicted
more easily in a parallel (‖) and perpendicular (⊥) form, for which components are
given by,

• ~E‖ : electric field projection onto the plane of incidence

• ~E⊥ : electric field projection onto the normal to the plane of incidence.

where it is implied that
~E = ~E‖ + ~E⊥ (B.1)

On the other hand, following the conditions imposed by Maxwell’s equations, elec-
tromagnetic fields can be described as scalar plane waves. Hence, the general
expression for an electromagnetic wave follows

~E(~x, t) = ~E0e
(~k·~x−wt) (B.2)

with the understanding that the true fields are the real parts of these complex ex-
pressions.
Therefore, using expression B.2 for the photon’s incident, reflected and transmitted
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electric fields terminology, it may be globally represented as,

~E‖(~x, t) = E0e
(~k·~x−wt)~e‖ (B.3)

~E⊥(~x, t) = E0e
(~k·~x−wt)~e⊥ (B.4)

These unitary vectors ~e⊥ and ~e‖ result from

~e⊥ = ~ninter × ~kq (B.5)

~e‖ = ~kq × ~e⊥ (B.6)

where ninter is a unitary vector normal to the dieletric interface and, kq (q=reflected,
refracted wave vector) is the photon’s wave vector.
On the other hand, let the angle between ~Eq (q=incident, reflected, refracted wave
vector) and the plane of incidence described by its surface normal (see equation B.5)
be αq. The polarization vector may then be rewritten as:

~Eq = Eq sin(αq)~e‖ + Eq cos(αq)~e⊥ (B.7)

Figure B.2: Representation of Cherenkov polarization angle ( α ).

Fresnel equations

The continuity of the tangential electric field component through the dielectric
boundary between the two media implies for all time t and photon intersection point
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coordinates ~r that

~n× ~Ei + ~n× ~Er = ~n× ~Et (B.8)

=⇒ ~n× ~E0ie
(~ki·~x−wt) + ~n× ~E0re

(~kr·~x−wt) = ~n× ~E0te
(~kt·~x−wt) (B.9)

Assuming that wave amplitudes are constant and taking into account that expression
B.9 is true over the entire surface and for all t, it follows that:

(~ki · ~x− wt) = (~kr · ~x− wt) = (~kt · ~x− wt) (B.10)

Applying the boundary conditions at the interface, whereas the components of both
~E and ~B are equal on both sides of the interface, the Fresnel coefficients for reflection
and transmission follow:

r‖ ≡
Er‖
Ei‖

=
n2 cos(θi)− n1 cos(θt)

n2 cos(θi) + n1 cos(θt)
(B.11)

r⊥ ≡
Er⊥
Ei⊥

=
n1 cos(θi)− n2 cos(θt)

n1 cos(θi) + n2 cos(θt)
(B.12)

t‖ ≡
Et‖
Ei‖

=
2n1 cos(θi)

n2 cos(θi) + n1 cos(θt)
(B.13)

t⊥ ≡
Et⊥
Ei⊥

=
2n1 cos(θi)

n1 cos(θi) + n2 cos(θt)
(B.14)
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C
Quality cuts
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The main reason of quality cuts application over the events is a low systematic
error. In further detail, having a clean data sample leads for some reason to exclusion
of events linked with bad reconstructions. Under this assumption, the priority must
be sample purity, not the total statistics.
Relying on previous studies, the quality cuts featured in this data sample are:

• Poor tracking paths reconstruction:
The Cherenkov cone’s axis depends on particle direction. Therefore, Cherenkov
angle will also change according to particle direction. As a result, an inaccu-
rate reconstruction of particle direction lead to an error increasing on RICH
reconstruction.

• Limited ring visibility:
A fraction of events falls outside the active area of detection matrix. This means
that the detected portion of Cherenkov ring may be mistaken by noisy events
( the signal of both are similar). There is not enough information to perform a
good reconstruction.

• Clusters in RICH matrix:
A basic physics phenomena resulting from the RICH matrix interaction with the
charged particle leads to a strong signal. For instance, this problem happens
either for high-Z events either several particles crossing the matrix. As a result,
their strong signals will mislead the LIP velocity reconstruction, since it will hide
the correct Cherenkov ring signal. In addition, when crossing particle ’s signal
is superimposed to the Cherenkov ring one, the charge reconstruction will be
completely changed. On the other hand, the velocity reconstruction is well
evaluated by LIP algorithm.

• Noisy pixels:
Both bad calibration or malfunction in electronics are plausible reasons to noisy
pixels. This results in unusual high signal of some isolated pixels. Lastly, the
ring reconstruction will be affected (e.g. clusters), although in a minor scale.

• Shadow of poron walls:
Particle hitting the radiator the edge of aerogel radiator tiles, emits the Cherenkov
photon ring whereas a fraction of Cherenkov light will be lost due to the ex-
istance of opaque poron walls separation from its neighbours. As a conse-
quence, the total collected signal will be reduced and the estimated charge will
have a lower value.
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Several quality cuts were applied to aerogel data samples in order to exclude bad
reconstruction. In addition, their application was implemented only for charges Z >

2. There are also other selection cuts regarding geometry-base principles given by:

• Ring Acceptance
Firstly, the accepted rings must have at least a 40% visible fraction. In further
detail, this fraction was evaluated according to the fraction of Cherenkov pho-
tons falling inside the detection matrix area. This result may be weighted by a
factor of 0.5, corresponding to the mirror reflection.
On the other hand, a clear separation should be made between the following
two concepts: effacc and acceptance. While effacc does not account the gaps
between light-guides, acceptance is evaluated using the full area. As a result,
a linear correlation could be performed over these two quantities as follows:
effacc ' (34/37)Acc.

• Distance of tile border
The LIP reconstruction method includes a radiator wall efficiency (effwall). Al-
though, the difficulty to describe accurately the effect of poron walls lead to the
following criteria construction: exclude events with an estimated radiator impact
point at a distancer smaller than 1 cm tile edge (see figure C.2).

• Kolmogorov probability for ring hits
Generally, Kolmogorov test: quantifies a distance between the empirical dis-
tribution function of the sample and the cumulative distribution function of the
reference distribution, or between the empirical distribution functions of two
samples.
For instance, Kolmogorov test was applied to azimuthal distribution of ring hits
by comparing with a uniform distribution (measured in the Cherenkov cone’s
frame of reference). Every event’s position will be described by a Pkolm within a
range between 0 and 1. Conversely, events with localized noise in the form of
clusters will a concentration of similar hits, leading to Pkolm = 0.1. As a result,
this cut is useful to exclude bad reconstruction due to clusters, with a criteria
defined by: Pkolm < 0.2.

• Barycentre distance
The supporting principle to apply this cust regards a non-uniformity in the posi-
tion of Cherenkov ring signal barycentre. Normally, RICH ring have an elliptical
shape or a crescent shape (if both direct and reflected components are sig-
nificant). Therefore, barycenter distance (dbary) is defined by the distance ring
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barycentre and highest PMT signal ring hits (see figure C.5).
Consequently, a well reconstructed event by LIP algorithm contain the Cherenkov
ring’s barycenter falling well inside the ring perimeter ( and far from ring hits
(except for crescent ring hits). Conversely, rings dominated by a strong cluster
signal will have their barycenter pushed towards their cluster, leading to unusu-
ally small barycentre distances (as shown in figure C.1).
From this considerations it was defined the following criteria: excluding events
with dbary < 5cm.

• Cluster signal distribution assymetry
Despite of collected ring signal geographical arrangement, a self-sustained ev-
idence is the unusual collected signal of Cherenkov ring hits by PMT. An excel-
lent criteria is evaluating the asymmetry cluster’s signal distribution within the
ring (aclust). More explicitly, this a quantity within a range from 0 to 1 and it is
basically defined by the following expression:

aclust = max(∆1,∆2, ...,∆Nclust) (C.1)

where

∆k =
k

Nclust

−
Nclust∑
k=1

nPMT
pe (k) (C.2)

and clusters are numbered in ascending order of their signals, i.e., nPMT
pe (1) <

nPMT
pe (2) < ... < nPMT

pe (Nclust). This estimator is illustrated in figure C.3. For in-
stance, the unusual high values of aclust shows the existence of strong clusters.
In conclusion, a typical range of aclust paramter for well reconstructed events
(for high Z values) is given by: 0.15 < aclust < 0.50.

• Hit signal distribution asymmetry
Similarly to signal asymmetry estimator for PMTs, one could also be made at
a pixel level as follows:

ahit = max(δ1, δ2, ..., δNhits) (C.3)

where

δk =
k

Nhits

−
Nhits∑
k=1

npe(k) (C.4)

and ring hits are also sorted: npe(1) < npe(2) < ... < npe(Nhits). This second
estimator is illustrated in figure C.4. Although ahit is close related with the previ-
ous one for PMTs, there are some specific features for each one. For instance,
strong PMTs signal is a more efficient evidence about cluster-base estimator,
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since it shows a clear high value even if pixel’s signal doesn’t tell it explicitly.
Therefore, the hit-type estimator is more suitable to describe noisy hits individ-
ually. Since estimator ahit is more sensitive to smaller variations in hit-signal,
some effects such delta-rays are more likely to be separated from photons ring
signal.
Both cluster and hit asymmetry estimators are charge-dependent, increasing
with particle charge.
Finally, from this careful study of the hit signal asymmetry estimator led to the
choice of the following acceptable range: 0.30 < ahit < 0.50.

• Clusterization coefficient
A new parameter will be introduced to measure, the clusterization factor c ,
so that the ring signal arrangement in clusters within a typical size of a PMT.
However, the simple evidence of that noise existence is enough to discard the
event.
This new estimator will regard the number of clusters present in the ring. Al-
though, it may occur that the number of clusters are distributed in a balanced
way,which means the barycentre is in a ”good” position.
Furthermore, regarding that each cell size in the RICH matrix is 34X34 mm,
this means that hits inside the same PMT are as far as a few cm. As a result,
a given is part of a continuous ring from a high-Z particle or may be part of an
isolated cluster, whereas it also surround by other similar hits (see figure C.6).
There is, although, a difference between the two previous situations for larger
distances:

– In the first one, an isolated cluster will be surround by a number of others
in its proximity, but a few for further distances;

– Meanwhile, in the second situation there will be many more hits surround-
ing the ring;

– This last feature helps to define the clusterization coefficient as ratio of
total ”observed” ring signal by ring hits to distances within a range [3,6]
cm:

c =

Nhits∑
i,j(i 6=j,dij<3 cm)

npe(i)npe(j)

Nhits∑
i,j(i 6=j,dij<6 cm)

npe(i)npe(j)

(C.5)

Since the denominator may be zero, it was considered for computational rea-
sons that c=-0.1 in those situations.
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Considering an idealised good ring (a thin ring with uniform signal distribution),
the signal will increase linearly with distance at first and a little faster as ring
curvatures changes. Upon this, a typical average value of c should be therefore
close to 0.5 = 3cm/6cm or a little lower, depending on two main source of fluc-
tuations given by: statistical fluctuation component decreasing with Z; residual
intrinsic fluctuation due to variations in event topology.
On the other hand, in events with isolated clusters only a small signal will be
added when the association range increases from 3 cm to 6 cm, leading to
values of c closer to 1. Conversely, if the matrix is very noisy (the ring is part
of a more and less uniform ”sea” of hits), the clusterization factor will increase
quadratically, leading to a value closer to 0.25 = (3cm/6cm)2.
The analysis shows that, for good reconstructions, clusterization factor tends to
fall in an increasily narrow interval centred at 0.5 as particle charge increases.
In order to include a wide range of particle charges, the following range was
selected: 0.30 < c < 0.60

(a) (b)

Figure C.1: Two types of events with barycentre C near the ring: noisy (bad) and crescent-
shaped (good).
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Figure C.2: Fiducial region (dashed square) used for aerogel tiles.

Figure C.3: Cluster signal distribution asymmetry.
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Figure C.4: Hit signal distribution asymmetry.

Figure C.5: Typical pattern for a good event with low Z: the signal,s barycentre C is far from
the ring.

(a) (b)

Figure C.6: Signal clusters in two contexts: isolated (noisy event) and grouped (good event
with high charge).
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