The RICH detector of the AMS-02 experiment: status and physics prospects

Rui Pereira (LIP - Lisbon)

on behalf of the AMS RICH collaboration

e-mail address: pereira@lip.pt

Outline

- The AMS experiment
- AMS-02 & RICH detector
- RICH physics
- Detector components
- RICH prototype tests
- System monitoring
- Pre-assembly tests
- Physics prospects
- Conclusions

The AMS experiment

 Broad international collaboration for the detection of primary cosmic rays in space

The AMS-02 detector on the International Space Station

The AMS experiment

- Data taking: > 3 years on the International Space Station
- Final detector AMS-02 currently being assembled, should be ready by the end of 2008
- Main goals:
 - Detailed study of cosmic ray spectra
 - AMS will provide an unprecedented statistics of charged cosmic ray measurements between ~100 MeV and ~1 TeV
 - ★ Charge identification up to iron (Z=26)
 - Precise velocity measurement allows isotope separation in the GeV region
 - Search for dark matter
 - Anomalies in cosmic ray spectra may provide information on dark matter constituents
 - Search for antinuclei
 - * The presence of heavy antinuclei (Z \ge 2) in cosmic rays may signal the existence of antimatter domains in the Universe

AMS-02 detector

- Has the following subdetectors:
 - Transition Radiation Detector
 - Time-of-Flight detector
 - Silicon Tracker
 - Ring Imaging Cherenkov detector
 - Electromagnetic Calorimeter
 - Anti-Coincidence Counter
- Detector capabilities:
 - Particle bending
 - Superconducting magnet (0.9 T)
 - Measurements of particle:
 - Rigidity = p/Z (Tracker)
 - **Direction** (ToF, Tracker, RICH)
 - ★ Velocity (RICH, ToF, TRD)
 - Charge (RICH, Tracker, ToF)
 - Trigger
 - ⋆ ToF, ECAL, ACC
- Total statistics: >10¹⁰ events
- Acceptance: ~ 0.5 m²sr

RICH detector

- Proximity focusing detector
- Two radiators
 - NaF (n=1.334) central square
 - Aerogel (n=1.05) outer region
- Ring acceptance increased with conical mirror (85% reflective)
- Detection matrix with 680 PMTs, each with 16 pixels
 - Pixel size: 8.5 mm

- Assembly of the RICH detector currently being finished at CIEMAT, Madrid
- AMS subsystems (including RICH) to be assembled at CERN

AMS event

Example of reconstructed event in AMS and RICH detector:

RICH physics: velocity measurement

¹⁰th ICATPP, Como, 8-12 October 2007

RICH physics: charge measurement

- Cerenkov ring signal is proportional to Z²
 - signal dependence on velocity must also be taken into account
- Ring acceptance ε (visible fraction) and photon absorption (both inside radiator and at mirror) must also be considered:

- Systematics from non-uniformities:
 - radiator: n, thickness, clarity...
 - detection: light guides, PMTs, temperature effects...
- Statistical error: $\Delta N_{pe} = \sqrt{N_{pe}(1 + \sigma_{pe}^2)}$

$$\Delta Z = \frac{1}{2} \sqrt{\frac{1 + \sigma_{pe}^2}{N_0} + Z^2 \left(\frac{\Delta \varepsilon}{\varepsilon}\right)^2}$$

where N_0 is the average number of photoelectrons for a fully contained ring and Z=1

RICH detector: radiator

- Dual radiator configuration
- Silica aerogel: outer region
 - 92 tiles, n = 1.05
 - 11.3 cm × 11.3 cm × 2.5 cm
 - Aerogels have the lowest refractive indices of all solid materials
 - Threshold: E_{kin} > 2.1 GeV/nuc
- NaF: central region
 - 16 tiles, n = 1.334
 - ♦ 8.5 cm × 8.5 cm × 0.5 cm
 - High Cerenkov angle (~40°) reduces photon loss in central hole
 - Extends RICH range to lower energies (E_{kin} > 0.5 GeV/nuc)

radiator container with all NaF and 1/4 of aerogel tiles

RICH detector: mirror

- ~33% of the photons emerging from the radiator point outside the detection matrix
- Conical mirror used for increased photon acceptance
- Structure: carbon fibre (3 segments)
- Reflector: 100 nm Al-Ni + 300 nm SiO₂
- Highly reflective (>85% at λ=420 nm)
 - Reflectivity must be known to ~1% for good charge reconstruction
- Dimensions
 - height: 46 cm
 - upper radius: 60 cm
 - lower radius: 67 cm

RICH detector: detection matrix

- 8 grids (4 rectangular + 4 triangular)
- 680 multianode PMTs coupled to light guides
- 16 pixels (4×4) in each PMT
- central hole due to insertion of electromagnetic calorimeter under the RICH

detection cell

triangular grid

RICH detector: detection cell

- Photomultipliers
 - Model: Hamamatsu R7900-MI6
 - Spectral response: 300-650 nm (peak at 420 nm)
 - pitch: 4.5 mm
- Light guides
 - material: plexiglass (n=1.49)
 - increase on photon collection
 - effective pixel size: 8.5 mm
- Shielding
 - aluminium plate (0.8-1.3 mm)
 - needed due to high stray magnetic field on detection plane (~300 G)

RICH prototype / cosmic-ray test

RICH prototype

- Detection matrix: 96 PMTs (~1/7 of final detector)
- Individual radiator tiles (NaF, several aerogel samples) tested in succession
- Mirror segment: 30° (1/12 of total), used in second beam test only

RICH prototype at cosmic-ray testing in Grenoble

- Cosmic-ray test at LPSC, Grenoble:
 - Prototype exposed to cosmic-ray flux at ground level

RICH prototype tests: setup

- First test:
 - Secondary beam produced from impact of primary 20 GeV/c lead beam on beryllium target
 - 5×10⁶ events recorded
- Second test:
 - Secondary beam produced from impact of primary 158 GeV/c indium beam on lead target
 - 11×10⁶ events recorded

RICH prototype tests: analysis

- First test beam selection:
 - p = 5 to 13 GeV/c (protons)
 - Studies on aerogel light yield as function of momentum
- Second test beam selection:
 - ♦ A/Z = 2, 2.25, 2.35
 - "Realistic" spectrum good for studies on charge separation
 - Several particle angles
 - Reflector tested
 - Studies on tile uniformity
 - Testing of readout electronics

Why detailed monitoring is needed

SYSTEM KNOWLEDGE REQUIREMENTS

parameter	limited by		monitoring
	velocity	charge	precision
aerogel radiator			
ref. index	\checkmark		~10 ⁻⁴
thickness		\checkmark	~0.4 mm
clarity		\checkmark	~3%
reflector			
reflectivity		\checkmark	~1%
detection matrix			
PMT gain		\checkmark	~5%
cell eff.		\checkmark	~5%

Velocity requirement: separation of Be isotopes up to E_{kin} ~ 10 GeV/nuc

Monitoring: aerogel properties

- Optical and geometrical characterization of aerogel tiles at LPSC, Grenoble with participation from LIP and UNAM
 - All tiles tested
 - Refractive index mapping: geometrical method using refraction of laser beam, step ~0.5 cm
 - Thickness mapping using comparator: step ~2 cm

Precision requirements for data on aerogel properties			
refractive index	10 ⁻⁴		
clarity	3%		
thickness	0.4 mm		

aerogel tile in optical bench

Monitoring: unit cell characterization

- Studies on unit cell characterization made at CIEMAT, Madrid
 - All PMTs tested

25

 PMT uniformity: photoelectron signal distribution measured, detection plane is uniform within 5-6%

10th ICATPP, Como, 8-12 October 2007

Pre-assembly tests: magnetic field

- Magnetic field tests performed at CERN and at LCMI, Grenoble
 - Expected stray field in PMT grid: up to ~ 300 G
- LCMI test: one rectangular grid, several PMTs monitored in all pixels
 - No significant change on average PMT gain
 - variation at pixel level observed
 - mean pixel gain variation below 10% in worst case
 - Magnetic field induces cross-talk between pixels

Shielded PMT grid in magnetic field

Pre-assembly tests: thermal & vacuum

- Thermal and vacuum testing performed at CIEMAT
- Thermal cycling performed on individual PMTs (-35°C to 55°C) and on rectangular grid (~1/5 of total matrix, -20°C to 40°C)
- Response to single photon measured in temperature range
- Vacuum test performed on rectangular grid

setup for thermal and vacuum tests with grid

10th ICATPP, Como, 8-12 October 2007

Pre-assembly tests: vibration

- Test of radiator container at SERMS, Terni
 - All NaF + 1/4 of aerogel tiles vibrated with lower ToF
- Test of PMT grid at INTA, Madrid
 - One rectangular grid tested (~1/5 of total matrix)
- Vibration tests also performed on individual unit cells

unit cell in vibration test

setup for RICH radiator + ToF vibration test

setup for grid vibration test

RICH assembly: current status

• A few recent images of the AMS-02 RICH...

Physics prospects

- RICH data are essential for particle identification
 - RICH separates charges up to Z ~ 26
 - Mass measurement (from RICH velocity+Tracker data) allows isotope separation
 - Improvement in albedo rejection
- Expected in AMS-02
 - Isotope separation of H, He, Be up to ~ 10 GeV/nucleon: major improvement on current data
- AMS data to provide insight on cosmic ray physics
 - D/p, ³He/⁴He, B/C: information on cosmic ray propagation
 - ¹⁰Be/⁹Be: confinement times, galactic halo models

Kinetic Energy (GeV/n)

10th ICATPP, Como, 8-12 October 2007

10

3

10

Conclusions

- AMS-02 will provide a major improvement on existing cosmic-ray data
- The RICH detector will play a key role in velocity, charge and mass reconstruction
 - Detector assembly is being finished at CIEMAT, Madrid
 - Extensive testing (mechanical, electrical, ...) has been performed on the detector's components
 - Prototype tests confirm design principles:
 - ★ $\Delta\beta/\beta$ ~ 10⁻³ for Z=1, 10⁻⁴ for Z>10
 - \star Δ Z ~ 0.16 for low Z, charge separation up to Z ~ 26
 - ★ Separation of light isotopes is possible
- Integration of the global AMS-02 detector will take place at CERN, should be finished by the end of 2008