Particle identification with the AMS-02 RICH detector: D/p and $\overline{D}/\overline{p}$ separation

L. Arruda, F. Barão, <u>Rui Pereira</u>*

(LIP - Lisbon)

* e-mail address: pereira@lip.pt

The AMS experiment

 Broad international collaboration for the detection of primary cosmic rays in space

The AMS-02 detector on the International Space Station

Prototype flight in space shuttle (1998)

The AMS experiment

- Data taking: > 3 years on the International Space Station
- Final detector AMS-02 currently being assembled, should be ready by the end of 2008
- Main goals:
 - Detailed study of cosmic ray spectra
 - ★ AMS will provide an unprecedented statistics of charged cosmic ray measurements between ~100 MeV and ~1 TeV
 - ★ Charge identification up to iron (Z=26)
 - Precise velocity measurement allows isotope separation in the GeV region
 - Search for dark matter
 - Anomalies in cosmic ray spectra may provide information on dark matter constituents
 - Search for antinuclei
 - * The presence of heavy antinuclei (Z \ge 2) in cosmic rays may signal the existence of antimatter domains in the Universe

AMS-02 detector

- Has the following subdetectors:
 - Transition Radiation Detector
 - Time-of-Flight detector
 - Silicon Tracker
 - Ring Imaging Cherenkov detector
 - Electromagnetic Calorimeter
 - Anti-Coincidence Counter
- Detector capabilities:
 - Particle bending
 - Superconducting magnet (0.9 T)
 - Measurements of particle:
 - Rigidity (Tracker)
 - **Direction** (ToF, Tracker, RICH)
 - ★ Velocity (RICH, ToF, TRD)
 - Charge (RICH, Tracker, ToF)
 - Trigger
 - ⋆ ToF, ECAL, ACC
- Total statistics: >10¹⁰ events
- Acceptance: ~ 0.5 m²sr

RICH detector

- Proximity focusing detector
- Two radiators
 - NaF (n=1.334) central square
 - Aerogel (n=1.05) outer region
- Ring acceptance increased with conical mirror (85% reflective)
- Detection matrix with 680 PMTs, each with 16 pixels
 - Pixel size: 8.5 mm

AMS event

Example of reconstructed event in AMS and RICH detector:

Mass separation

- Cosmic-ray spectrum is dominated by protons (~90%)
 - Other particles with the same charge (e⁺, D) must be identified using mass-sensitive methods
 - Similar situation for negative-charged particles: high statistics of electrons and antiprotons, much smaller number of antideuterons
- Smaller components of cosmic-ray spectrum at each charge provide crucial information:
 - D/p: secondary vs. primary, data on secondary production, ISM properties
 - ¹⁰Be/⁹Be: radioactive vs. stable, data on galactic confinement times
 - D: possible dark matter signature, expected to be produced in neutralino annihilation
- Mass separation is needed!

RICH velocity measurement

 Opening of Cherenkov cone is function of velocity:

$$\cos \theta_c = \frac{1}{\beta n}$$

- Expected velocity resolution in aerogel events for $\beta \approx 1$:
 - $\Delta\beta/\beta \sim 1.3 \times 10^{-3}$ for Z=1
 - $\Delta \beta / \beta \sim 2 \times 10^{-4}$ for Z>10

- Velocity resolution depends on:
 - Number of ring hits
 - Pixel size (8.5 mm)
 - Radiator thickness
 - Radiator chromaticity

Tracker rigidity measurement

- Silicon Tracker: 5 planes, 8 layers of doublesided silicon microstrip sensors (total ~7 m²)
- ~2500 sensors arranged on 192 ladders
- Accuracy of sensor relative position: better than 5 mm
- Spatial resolution for each measurement:
 - 10 μ m on the bending plane
 - 30 μ m on the non-bending plane
- Rigidity (R=pc/Z) measurement up to 1-2 TV

Mass resolution

- Key issue for mass separation, depends on velocity and rigidity data
- Best resolution for protons: σ_m/m ~ 2% at lower energies (< 1 GeV/n for NaF, 2-3 GeV/n for aerogel)
- Similar results obtained for deuterons

6th NWAP, Faro, 6-8 September 2007

Mass separation: procedure

- Goal: realistic simulation of RICH performance on mass separation in the context of the AMS detector
 - Full simulation of the AMS-02 detector used
- Procedure for event selection:
 - Preliminary data selection cuts to exclude bad reconstructions
 - Cuts on RICH data to refine sample quality
 - Evaluate mass separation capability
- Physics channels:
 - D/p case used, ongoing study this presentation
 - Previous studies of D/p, ³He/⁴He, ¹⁰Be/⁹Be cases with standalone simulation of RICH detector

D/p separation: Monte Carlo samples

- Data samples used:
 - Protons
 - ★ Statistics: 4.4 × 10⁸ events, p = 0.5-200 GeV/c/nucleon
 - \star Spectrum shape: dN/dE_{tot} \propto E_{tot}-2.7
 - Deuterons
 - ★ Statistics: 5.6 × 10⁷ events, p = 0.25-10 GeV/c/nucleon
 - ★ Spectrum shape: linear interpolation of D/p ratios from Seo et al.

D/p separation: event quality cuts

- Preliminary cuts include:
 - no. particles seen by the detector
 - no. tracks in the TRD
 - no. hits used in the Silicon Tracker's rigidity reconstruction
 - comparison of rigidity values from two different reconstruction algorithms
 - comparison of rigidity measurements from the two halves of the Silicon Tracker
 - ToF velocity measurement and no. clusters used in its reconstruction

RICH cuts include:

- minimum no. hits in the Čerenkov ring
- maximum no. noise hits
- limit on total ring signal
- minimal photon ring acceptance (visible fraction)
- compatibility between velocities calculated from two different algorithms
- good reconstructed charge

Results: proton & deuteron acceptances

- Acceptance after all cuts (preliminary + RICH) for events having E_{kin} > 3 GeV/nucleon:
 - protons: ~ 0.07 m²sr
 - deuterons: ~ 0.05 m²sr

Mass separation

- Mass reconstructed using RICH velocity & Tracker rigidity
- Separation between proton and deuteron peaks visible up to ~ 8 GeV/nucleon
- RICH detector plays a major role in background reduction

Results: D/p ratio

Even after a single day of data taking, AMS will be able to improve on the existing results for the D/p ratio:

Results: D/p rejection factor

- Rejection factor higher than 10⁴ obtained for D/p separation in optimal region (E_{kin} ~ 3-5 GeV/nucleon) using aerogel radiator
- Estimate is currently limited by simulation statistics
- Results expected to be similar for antideuteron case

Conclusions

- AMS-02 will provide a major improvement on existing cosmic-ray data
- Mass separation is essential to address several physics issues (cosmic-ray propagation, dark matter signals...)
- Quality of mass separation for D/p has been studied in the context of the full AMS-02 simulation
 - Full set of cuts using both non-RICH and RICH data has been established
 - Mass separation possible up to ~8 GeV/nucleon
 - Mass resolution ~2% in optimal regions above Cerenkov thresholds
 - Reliable estimate of D/p ratio up to ~6 GeV/nucleon after a single day of data taking
 - Current rejection factor >10⁴ in optimal region (up to 5 GeV/nuc)
 - Results expected to be similar for anti-D/anti-p separation