

Estudo do protótipo do detector RICH de AMS com fragmentos de um feixe de iões

Luísa Arruda
LIP -Lisboa

Sumário

- Setup experimental
- Caracterização do radiador aerogel
 - ✓ Reconstrução de β e Z
 - Uniformidade da telha
- Radiador NaF
- Dados com o protótipo do espelho
 - Reconstrução de β e Z
 - Avaliação da reflectividade do espelho
- Conclusões

Test Beam 2003: setup experimental

Área experimental H8 no CERN, Outubro 2003

- feixe primário de iões de índio (Z=49) com 158 GeV/c/n
- alvo de chumbo
- partículas a atravessarem o RICH: fragmentos iónicos (Z<49)</p>
- selecção do feixe: A/Z=2, 2.25, 2.35
 - Protótipo do RICH
 - Protótipos do tracker e do TOF (dados do tracker usados para obtenção do traço e selecção externa de carga)
 - 2 cintiladores orgânicos para trigger e selecção externa de carga

Test Beam 2003: setup experimental

Protótipo do RICH:

- matriz de detecção com 96 PMTs
- radiador: diversas amostras (telhas) de aerogel, NaF
- protótipo do espelho com 1/12 da cobertura azimutal do final

Objectivos:

- ✓ testar a electrónica de front-end do voo
- ✓ avaliação dos radiadores de aerogel e NaF
- ✓ avaliação da performance do RICH
- ✓ avaliação da reflectividade do espelho

Test Beam 2003: dados analisados

- > 11 dias de tomada de dados
- > ~10⁷ eventos recolhidos
- diferentes incidências das partículas (0°,5°,10
 15°,20°)
- distância de expansão do radiador à matriz ajustada para ter anéis totalmente contidos
- selecção do feixe: A/Z = 2, 2.25

Características do feixe			
Secção do feixe	A/Z	β	
'~1 mm²	2	~1	
~1 cm²	2.25	~1	

Test Beam 2003: dados analisados

Radiadores utilizados			
radiador	n	Espessura(cm)	
Aerogel Novosibirsk (CIN103)	1.03	3	
Aerogel Matsushita (MEC103)	1.03	3 X 1.1	
Aerogel Novosibirsk (CIN105)	1.05	2.5	
Fluoreto de Sódio	1.33	0.474	

Reconstrução de θ_c

A maximização de uma função de máxima verosimilhança permite obter o melhor candidato para o ângulo θ_{c} .

$$V(\theta_c) = \prod_{i=1}^{N_{hits}} P_i^{npe_i} \{ r_i(\boldsymbol{\varphi}_i(\theta_c)) \} = (1-b) \frac{1}{P_{sinal}} e^{-\frac{1}{2} \left(\frac{r_i}{\sigma}\right)^2} + \frac{b}{R_{ruido}}$$

r_i ≡ distância mínima ao anel de Cerenkov

P_i ≡ probabilidade do hit i pertencer ao padrão

 σ = sigma dos resíduos extraído da simulação

b ≡ fracção de hits de ruído por evento

R ≡ dimensões activas da matriz

Resolução ($\Delta\beta$)

- ✓ Largura dos resíduos avaliada para um dado radiador AGL03 (σ_{res}~4mm)
- ✓ Estudo da resolução de velocidade com diferentes d_{corte} e com o b estimado para cada d

 (θ, ϕ)

Reconstrução de Z

O número de fotões de Cerenkov radiados quando uma partícula carregada atravessa um comprimento de radiador ΔL , depende da sua carga Z.

$$N \propto Z^2 \Delta L \left(1 - \frac{1}{\beta^2 n^2} \right)$$

A sua detecção na matriz de fotomultiplicadores perto do padrão esperado depende de:

- interacções no radiador (ε_{rad})
- aceitância geométrica
- perdas no light guide (ϵ_{lg})
- eficiência quântica dos fotomultiplicadores (ε_{PMT})

O número de fotões detectados varia de evento para evento

$$N_{pe} \propto Z^2 \Delta L \left(1 - \frac{1}{\beta^2 n^2}\right) \frac{\epsilon}{\epsilon_{tot}(\theta_c, \theta, \phi, P_I)} e^{t}$$

$$\Rightarrow Z^2 \propto \frac{N_{pe}}{\mathcal{E}_{tot}} \frac{1}{\Delta L} \frac{1}{\sin(\theta_c)}$$

Test Beam 2003: selecção de dados

Eventos de background

Rejeição: flatness do anel ou probabilidade de Kolmogorov. Ambas requerem a uniformidade azimutal dos hits

Resolução β com os radiadores de aerogel

Resolução β para Z=2, H=33.5 cm			
radiador	CIN103	MEC103	CIN105
σ(β)X10 ³	0.421±0.003	0.435±0.002	0.481±0.004

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

25

0

Todos os radiadores testados cumprem os requisitos para a medida de β com o RICH!!

 $A = 0.659 \pm 0.003$

 $B = 0.037 \pm 0.001$

H=42.3 cm

15

10

Zselected with scintillators and STD

20

CIN103

0.9

Δβ/β*1.Ε3

0.6

0.5

0.4

0.3

0.2

0.1

$$\frac{\Delta \beta}{\beta} = 10^{-3} \sqrt{\left(\frac{A}{Z}\right)^2 + B^2}$$

Zselected with scintillators and STD

Resolução em Z com os radiadores de aerogel

$$\sigma(Z) = \frac{1}{2} \sqrt{\frac{1 + \sigma_{pe}^2}{N_0} + \left(\frac{\Delta N}{N}\right)_{syst}^2} Z^2$$

σ_{pe} resolução s.p.e.

N₀ light yield para Z=1

ΔN/N* Z² erro sistemático

Jornadas LIP 2005, 21 Dezembro, 2005

A melhor resolução de carga é obtida com CIN 1.05 !!

Uniformidade da telha de aerogel: photon yield

A uniformidade do radiador é estimada com base no *photon yield* para Z=2 e usando o traço do STD.

A larga escala (~2-3 cm) comparação de dados de diferentes runs de scan

2-3 cm

Uniformidade do photon yield %

CIN103	0.5±0.1
MEC103	0.6±0.1
CIN105	Telha de reduzidas dimensões

A pequena escala (~1 mm)

Estudo da uniformidade com dados de um *wide*

Secção do feixe ~ 0.7x1.2 cm²

CIN105 0.6±0.1

Todos os radiadores mostram uma uniformidade ao nivel <1%

Uniformidade da telha de aerogel: índice de refracção

Da relação Δβ/β=Δn/n

Temos uma estimativa directa da uniformidade do índice de refracção com base no valor médio de β reconstruído

Radiador	Δnx10³ <i>Wide beam</i>
CIN105	0.06±0.02

O radiador CIN105 mostra não uniformidades negligíveis no índice de refraçção

Resolução \(\beta \) com o radiador de NaF

Reconstrução de Z com o radiador de NaF

Eficiência de detecção no NaF: eficiência LG

Os light guides estão a colectar fotões a um grande ângulo (62°)

Com o aerogel só se obtem ângulos de incidência de fotões até 30° (inclinação das partículas de 15°).

Os runs de NaF permitem estudar a eficiência de detecção na região angular de incidência dos 30°-70°

Estudo de compreensão da eficiência de LG observada nos dados a decorrer...

Dados com o protótipo do espelho

- Segmento de espelho com 1/12 da cobertura azimutal total
- Dados tomados com diferentes combinações de parâmetros:
 - índice de refracção do radiador (1.03, 1.05)
 - ângulo entre o detector e a direcção do feixe (0°,5°,15°,20°)
 - Distância de expansão (42.3, 38.0 cm)

Reflectividade do espelho avaliada com um run AGL105 (θ=15°)

Evento Z=2

Distribuição do ângulo de incidência do fotão no espelho (em relação à normal à superfície do espelho)

$$oldsymbol{arepsilon}_{mir} = rac{N_{pe}^{ref}}{N_{pe}^{dir}} rac{oldsymbol{arepsilon}_{geo}^{dir}}{oldsymbol{arepsilon}_{geo}^{ref}} rac{oldsymbol{arepsilon}_{geo}^{dir}}{oldsymbol{arepsilon}_{geo}^{ref}}$$

Avaliação do número de fotoelectrões

Selecção de eventos de hélio (Z=2)

Avaliação do npe: método de fit

A distribuição do npe para o troço reflectido depende:

- lei estatística (Poisson, Gaussiana)
- amplificação do PMT
- distribuição das velocidades das partículas (fixas neste caso) $\frac{1}{(x-n)^2}$

caso)
$$F(x) = \sum_{n} P(n)G(x, n) = \sum_{n} \frac{e^{\mu}\mu^{n}}{n!} \frac{1}{\sqrt{n}\sigma_{pe}\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-n}{\sqrt{n}\sigma_{pe}}\right)^{2}}$$

A distribuição do npe para o troço directo pode ser fitada por:

$$F(x) = \sum_{n} G(n)G(x, n) = \sum_{n} \frac{1}{\sqrt{\mu}} e^{-\frac{1}{2} \left(\frac{n-\mu}{\sqrt{\mu}}\right)^{2}} \frac{1}{\sqrt{n\sigma_{pe}}\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-n}{\sqrt{n\sigma_{pe}}}\right)^{2}}$$

Reflectividade do espelho avaliada com um run AGL105 (θ=15°)

Eventos He

	Directo	Reflectido
N_{pe}	35.9+/-0.1	9.51+/-0.02
$\epsilon_{ ext{LG}}$	0.7067+/-0.2E ⁻⁴	0.7709+/-0.3E ⁻⁴
$oldsymbol{arepsilon}_{ m geo}$	0.6254+/-0.7E ⁻⁴	0.205+/-0.2E ⁻⁴

Medida óptica da reflectividade

Espelho com revestimento de SiO

Reflectividade ~ (75.1 +/- 0.2) %

Reflectividade do espelho avaliada com um run AGL105 (θ=15°)

Conclusões

- Os resultados do TB03 permitiram caracterizar os radiadores de aerogel e estudar a performance do radiador de NaF.
- Aerogel:
 - Os radiadors CIN103, CIN105 e MEC103 foram testados e satisfazem os requerimentos do AMS-RICH no que respeita às medidas de β e Z.
 - estudos de uniformidade:
 - Uniformidade do aerogel no photon yield está assegurada ao nível de 1%
 - ✓ Uniformidade do aerogel no índice de refracção ∆n <10-4</p>
- ✓ NaF:
 - Resolução de β segue o esperado.
 - Discrepância sinal dados/MC em estudo
- Espelho:
 - Medidas de β e Z não apresentam degradação.
 - Medida da reflectividade possível com os dados. Os resultados estão de acordo com a medida óptica do fabricante.