

Estudo do protótipo do detector RICH de AMS com fragmentos de um feixe de iões

Luísa Arruda LIP -Lisboa

1

Jornadas LIP 2005, 21 Dezembro, 2005 luisa@lip.pt

Sumário

- Setup experimental
- Caracterização do radiador aerogel
 - Reconstrução de β e Z
 - Uniformidade da telha
- Radiador NaF
- Dados com o protótipo do espelho
 - Reconstrução de β e Z
 - Avaliação da reflectividade do espelho
- Conclusões

Test Beam 2003: setup experimental

Área experimental H8 no CERN, Outubro 2003

feixe primário de iões de índio (Z=49) com 158 GeV/c/n

alvo de chumbo

partículas a atravessarem o RICH: fragmentos iónicos (Z<49)</p>

selecção do feixe: A/Z=2, 2.25, 2.35

Protótipo do RICH

Protótipos do tracker e do TOF (dados do tracker usados para obtenção do traço e selecção externa de carga)

2 cintiladores orgânicos para trigger e selecção externa de carga

Test Beam 2003: setup experimental

Protótipo do RICH:

- matriz de detecção com 96 PMTs
- radiador: diversas amostras (telhas) de aerogel, NaF
- protótipo do espelho com 1/12 da cobertura azimutal do final

Objectivos:

- ✓ testar a electrónica de *front-end* do voo
- avaliação dos radiadores de aerogel e NaF
- avaliação da performance do RICH
- avaliação da reflectividade do espelho

Jornadas LIP 2005, 21 Dezembro, 2005

Test Beam 2003: dados analisados

- 11 dias de tomada de dados
- ~10⁷ eventos recolhidos
- diferentes incidências das partículas (0°,5°,10 15°,20°)
- distância de expansão do radiador à matriz ajustada para ter anéis totalmente contidos

selecção do feixe: A/Z = 2, 2.25

Características do feixe			
Secção do feixe	A/Z	β	
'~1 mm²	2	~1	
~1 cm ²	2.25	~1	

Test Beam 2003: dados analisados

Radiadores utilizados			
radiador	n	Espessura(cm)	
Aerogel Novosibirsk (CIN103)	1.03	3	
Aerogel Matsushita (MEC103)	1.03	3 X 1.1	
Aerogel Novosibirsk (CIN105)	1.05	2.5	
Fluoreto de Sódio	1.33	0.474	

Jornadas LIP 2005, 21 Dezembro, 2005

Reconstrução de θ_c

Jornadas LIP 2005, 21 Dezembro, 2005

Reconstrução de Z

O número de fotões de Cerenkov radiados quando uma partícula carregada atravessa um comprimento de radiador ΔL , depende da sua carga Z.

 $N \propto Z^2 \Delta L \left(1 - \frac{1}{\beta^2 n^2} \right)$

A sua detecção na matriz de fotomultiplicadores perto do padrão esperado depende de:

- interacções no radiador (ε_{rad})
- aceitância geométrica
- perdas no light guide (ε_{lg})
- eficiência quântica dos fotomultiplicadores (ε_{PMT})

O número de fotões detectados varia de evento para evento

$$N_{pe} \propto Z^2 \Delta L \left(1 - \frac{1}{\beta^2 n^2} \right) \underbrace{\mathcal{E}}_{\mathcal{E}_{tot}}(\theta_c, \theta, \phi, P_I)}_{\mathcal{E}_{tot}}$$

$$\Rightarrow Z^2 \propto \frac{N_{pe}}{\varepsilon_{tot}} \frac{1}{\Delta L} \frac{1}{\sin(\theta_c)}$$

Jornadas LIP 2005, 21 Dezembro, 2005

Test Beam 2003: selecção de dados

Eventos de background

Eventos resultantes de fragmentação

Rejeição: flatness do anel ou probabilidade de Kolmogorov. Ambas requerem a uniformidade azimutal dos hits

Jornadas LIP 2005, 21 Dezembro, 2005

Resolução β com os radiadores de aerogel

Resolução em Z com os radiadores de aerogel

Jornadas LIP 2005, 21 Dezembro, 2005

A melhor resolução de carga é obtida com CIN 1.05 !!

Uniformidade da telha de aerogel: photon

A uniformidade do radiador é estimada com base no *photon yield* para Z=2 e usando o traço do STD.

rield

Uniformidade da telha de aerogel: índice de refracção

Da relação $\Delta\beta/\beta = \Delta n/n$

Temos uma estimativa directa da uniformidade do índice de refracção com base no valor médio de β reconstruído

O radiador CIN105 mostra não uniformidades negligíveis no índice de refracção

Jornadas LIP 2005, 21 Dezembro, 2005

Resolução β com o radiador de NaF

Jornadas LIP 2005, 21 Dezembro, 2005

Reconstrução de Z com o radiador de NaF

Eficiência de detecção no NaF: eficiência LG

 θ_{γ}

Os light guides estão a colectar fotões a um grande ângulo (62°)

Com o aerogel só se obtem ângulos de incidência de fotões até 30° (inclinação das partículas de 15°).

Os runs de NaF permitem estudar a eficiência de detecção na região angular de incidência dos 30°-70°

Estudo de compreensão da eficiência de LG observada nos dados a decorrer...

Dados com o protótipo do espelho

- Segmento de espelho com 1/12 da cobertura azimutal total
- Dados tomados com diferentes combinações de parâmetros:
 - índice de refracção do radiador (1.03, 1.05)
 - ângulo entre o detector e a direcção do feixe (0°,5°,15°,20°)
 - Distância de expansão (42.3, 38.0 cm)

Reflectividade do espelho avaliada com um run AGL105 (θ=15°)

Distribuição do ângulo de incidência do Evento Z=2 fotão no espelho (em relação à normal à superfície do espelho) $\operatorname{Prob}^{\mathsf{Kol}} = 0.$ 20 $x 10^{-3}$ $\Theta^{\rm rec} = 18.28$ Deg RUN 575 / EVENT 12332324 X (cm) Nb us hits= 43 3000 15 signal 2500 10 (p.e.) \boxtimes 2000 >60 5 30-60 1500 15-30 \times 0 7-15 1000 3 - 7 $^{-5}$ η_r 1-3 500 Ուհ 0 - 1-100 63 62 64 65 66 67 68 -15 thi attack mirror **c**dir <mark>|</mark> . . . -20 \mathcal{E}_{mir} -20 -15-10-55 10 15 20 Y(cm)

Jornadas LIP 2005, 21 Dezembro, 2005

Avaliação do número de fotoelectrões

Jornadas LIP 2005, 21 Dezembro, 2005

Avaliação do npe: método de fit

Reflectividade do espelho avaliada com um run AGL105 (θ=15°)

Eventos He

	Directo	Reflectido
N _{pe}	35.9+/-0.1	9.51+/-0.02
$\epsilon_{\rm LG}$	0.7067+/-0.2E ⁻⁴	0.7709+/-0.3E ⁻⁴
$\mathbf{E}_{\mathrm{geo}}$	0.6254+/-0.7E ⁻⁴	0.205+/-0.2E ⁻⁴

Medida óptica da reflectividade

Espelho com revestimento de SiO

Reflectividade ~ (75.1 +/- 0.2) %

Reflectividade do espelho avaliada com um run AGL105 $(\theta=15^{\circ})$

Jornadas LIP 2005, 21 Dezembro, 2005

Conclusões

- Os resultados do TB03 permitiram caracterizar os radiadores de aerogel e estudar a performance do radiador de NaF.
- Aerogel:
 - Os radiadors CIN103, CIN105 e MEC103 foram testados e satisfazem os requerimentos do AMS-RICH no que respeita às medidas de β e Z.
 - estudos de uniformidade:
 - Uniformidade do aerogel no photon yield está assegurada ao nível de 1%
 - Uniformidade do aerogel no índice de refracção Δn <10⁻⁴
- ✓ NaF:
 - \checkmark Resolução de β segue o esperado.
 - Discrepância sinal dados/MC em estudo
- Espelho:
 - Medidas de β e Z não apresentam degradação.
 - Medida da reflectividade possível com os dados. Os resultados estão de acordo com a medida óptica do fabricante.