Isotopic separation of cosmic rays with the AMS experiment: the role of the RICH detector

Rui Pereira

(LIP - Lisbon)

e-mail address: pereira@lip.pt

The AMS experiment

AMS-01: test flight - 10 days in 1998

 Final detector to be installed in the International Space Station

- AMS is a broad international collaboration (~ 500 members) for the detection of primary cosmic rays in space
- Successful test flight aboard space shuttle Discovery in June 1998
- Detector integration at CERN in 2006

AMS-02: detector to be installed in the ISS in 2008

The AMS experiment

- Delivery to ISS scheduled for 2008
 - Data taking time: 3 years minimum
- Main goals:
 - Detailed study of cosmic ray spectra
 - AMS will provide an unprecedented statistics of charged cosmic ray measurements
 - Precise velocity measurement allows isotope separation in a large energy range
 - Search for dark matter
 - Anomalies in cosmic ray spectra may provide information on dark matter constituents
 - Search for antinuclei
 - The presence of heavy antinuclei in cosmic rays may signal the existence of antimatter domains in the Universe

AMS-02 detector

- Has the following subdetectors:
 - Transition Radiation Detector
 - Time-of-Flight detector
 - Silicon Tracker
 - Ring Imaging Cherenkov detector
 - Electromagnetic Calorimeter
 - Anti-Coincidence Counter
- Detector capabilities:
 - Particle bending
 - Superconducting magnet (0.9 T)
 - Measurements of particle:
 - * Rigidity (Tracker)
 - * **Direction** (TOF, Tracker, RICH)
 - * Velocity (RICH, TOF, TRD)
 - * Charge (RICH, Tracker, TOF)
 - Trigger
 - * TOF, ECAL, ACC
- Total statistics: > 10¹⁰ events

AMS-02 detector

Major advantages of AMS:

- Out of atmosphere
- Particle discrimination up to TeV region
- Very good velocity resolution (~10-3)
- Charge separation up to Z~26
- Large acceptance (0.5 m² sr)
- Long duration (3 years minimum)
- Detector redundancy

AMS experiment

RICH detector

Proximity focusing detector based on Cherenkov effect

Two radiators

Charge measurement

- Charge magnitude given by RICH:
 - Charge estimated from number of photons in Cherenkov ring (also function of velocity):

$$N_{\gamma} \propto Z^2 \Delta L \left(1 - \frac{1}{\beta^2 n^2} \right)$$

- Ring acceptance and other effects (e. g. mirror reflectivity) must be taken into account
- Cross-check with measurements from Tracker, TOF

Charge signal

- Particle bending information from Tracker
- Albedo rejection from TOF, RICH (no ring if particle comes from bottom!)

Velocity measurement

 Opening of Cherenkov cone is function of velocity:

$$\cos \theta_c = \frac{1}{\beta n}$$

RICH velocity resolution (aerogel)

- Test beam, cosmic ray data:
 Δβ/β = 0.09% for Z=1
 Expected in AMS-02:
 - * $\Delta\beta/\beta \sim 0.13\%$ for Z=1
 - * $\Delta\beta/\beta \sim 10^{-4}$ for Z>10

Mass identification

- Rigidity (R) measurement from Tracker
 - Signal in tracker planes indicates particle bending in magnetic field
- Charge + rigidity \Rightarrow momentum:

p = RZ

• Momentum + velocity \Rightarrow mass:

 Isotopic separation relies on accurate mass identification

RICH simulation data samples

• A large statistics was fully simulated on the RICH:

Ζ	Isotopes	No. events		Time
1	p, d	AGL+NaF events	1.6 x 10 ⁷	≈ 1 day
		NaF only events	1.5 x 10 ⁷	≈ 1 week
2	³He, ⁴He	2.0 x 10 ⁶		≈ 1 day
4	⁹ Be, ¹⁰ Be	8.5 x 10⁵		≈ 1 year

Setup tested: Aerogel (n=1.05) + NaF

- Realistic radiator properties (from beam tests, etc.) were used
- Only events above geomagnetic cutoff were considered
 - Simulation takes this into account
 - Cutoff is higher at equator, lower at magnetic poles

Isotope separation procedure (He, Be)

- Simulated ratios ~ 0.1-0.4
- Mass reconstructed from p & β data
 - Mass resolution depends on energy
- Relative isotopic abundances determined for He, Be:
 - Separate mass fits for Aerogel & NaF populations, one fit for each energy channel
 - Overall mass region fit to 2 gaussians, width ratio assumed constant:

*
$$\sigma_1 / \sigma_2 = m_1 / m_2$$

Reconstruction results: ³He, ⁴He

Reconstruction results: ⁹**Be**, ¹⁰**Be**

Isotope separation procedure (H)

- Simulated ratio: d / p ~ 10⁻²
- Relative isotopic abundances determined for H (protons+deuterons):
 - Two kinds of spectrum tested:
 - Mass distribution
 - * Inverse mass distribution \rightarrow better
 - Fit to 2 gaussians not good for this case (N_p>>N_d, significant p tail in d region)
 - Gaussian fit performed on proton peak; fit to gaussian + noise used for deuteron peak

Reconstruction results: p, d

Mass resolution & separation power

AMS vs. previous experiments: H

- NaF radiator: allows a clear improvement on existing data at ~ 1 GeV
- Aerogel radiator: allows an extension of energy region to ~ 5 GeV
- Prospects from a single week (NaF) or day (Aerogel) of data
 - AMS will work for 3 years

AMS vs. previous experiments: He, Be

Major improvements also expected for other elements:

International Predoctoral School, Les Houches, 28 Aug - 9 Sep 2005

Conclusions

- Results of Monte Carlo simulation of H, He and Be events in the RICH detector of AMS were analysed
 - Two independent methods for velocity and charge reconstruction developed at LIP and CIEMAT
- Isotopic separation was performed
 - Good results with «low» statistics (compared to AMS-02 total):
 - * ~ 1 day/week for H & He, ~ 1 year for Be
 - Low isotopic ratio (~10⁻²) and low mass posed a problem for hydrogen ⇒ overcome by specific tools (e. g. inverse mass fits)
 - Best mass resolutions ~ 2 % at 3 GeV/n (Aerogel), ~ 3 % at 1 GeV/n (NaF) for all elements tested
 - Isotopic ratios may be calculated for 0.5–10 GeV/nucleon
 - Good reconstruction efficiencies for high energy ⇒ tight cuts can always be applied to improve signal/background ratio
 - AMS results will provide a major improvement on existing data
- Near future...

Future work

- The challenge of d / p separation
 - Hardest channel
 - Use AMS full simulation to study this problem
 - Explore full capabilities of RICH
- Evaluate AMS sensitivity to d channel
 - $d/p \sim 10^{-5}$ reachable?
 - Tighten energy boundary?
 - Reduce strongly p, p background?

Can the exotic (dark matter) signal be enhanced? How?