The Ring Imaging Cherenkov Detector (RICH) of the AMS Experiment

F. Barao on behalf of the RICH collaboration

barao@lip.pt

LIP/IST - Lisbon, Portugal

Outline

- Physics Motivations
- ✓ RICH goals
- RICH design principles
 - radiator, reflector, detection cells
- Velocity and Charge accuracy
- RICH Prototype beam test
 - aerogel choice and properties
 - velocity and charge reconstruction aerogel and NaF radiators
 - mirror reflectivity
- Conclusions

Astrophysics motivations

Cosmic Rays Propagation

- The study of secondary species such as Li, Be and B which result essentially from CNO spallation provides information about propagation of cosmic-rays (CNO group) in galaxy (B/C)
 - Z>2 abundance only \sim 1%
- The propagation history of the Helium nuclei can be probed by measuring the ratio ³He/⁴He ³He is essentially secondary (from the ⁴He spallation)

Cosmic Rays Clocks

The measurement of the ratio ¹⁰Be/⁹Be gives information about confinement of cosmic rays in the Galactic volume and is sensitive to different propagation models T_{1/2}(¹⁰Be) ~ 1.5 × 10⁶ yrs

New Physics

positrons, antiprotons, antideuterons : dark matter probe

See Talk of M. Sapinski, "Astrophysics with AMS02", OG.1.1

RICH goals

- Electric charge measurement over a wide range of Z's at least up to iron element (Z=26)
- High accuracy on velocity measurement
 $\Delta \beta / \beta \sim 0.1$ % for singly charged particles
- Contribution to AMS redundancy on albedo rejection

Ring Imaging Cerenkov Detector (RICH)

- proximity focusing Ring Imaging
 Detector
 - dual solid radiator configuration
 - ► sodium fluoride in central region n = 1.33, 5 mm thick
 - low index material aerogel elsewhere n = 1.05, 27 mm thick
 - conical reflector
 - photomultiplier matrix
 680 multipixelized (4 × 4) unit cells

See C. LeLuc talk, "The AMS-02 spectrometer" OG.1.5

RICH radiator plane

Cerenkov radiation

 $\cos \theta_{\rm c} = \frac{1}{\beta {
m n}}$

Light Yield

the light yield increases with the radiator thickness (L), the charge (Z), the velocity (β) and refractive index (n) :

 $N_{p.e} \propto Z^2 \; L \left(1 - rac{1}{eta^2 n^2}
ight) \int arepsilon \; dE$

radiator	\boldsymbol{n}	Z=1, $eta \sim 1$	
		N_γ	$N_{p.e}$
aerogel	1.050	$\sim 75/cm$	~ 7
NaF	1.334	$\sim 375/cm$	\sim 4

Aerogel : lowest refractive index solid material

- hygroscopic : pure gas pumped inside (N_2)
- Rayleigh photon scattering $\frac{d\sigma}{d\Omega} \propto \frac{(1+\cos^2\theta_c)}{\lambda^4}$ directionality of cerenkov photons lost transparency decreases for UVs $\Lambda_{int} = \frac{\lambda^4}{C}$

Ring acceptance

Sodium Fluoride (NaF) in the center increases the detector acceptance and extends the kinematic coverage $(35 \times 35 \text{ cm})$

Rich detector : Reflector

- a significant fraction (~ 33%) of the photons emerging from the radiator point outside the detection matrix
 - conical reflector made of carbon fiber structure with multilayer coating (AI + SiO2)

✓ high reflectivity > 85% @ 420 nm

RICH photon detection

Photomultipliers

- matrix with 680 PMT's
- 4x4 multianode R7600-M16 (4.5 mm pitch)
- single photoelectron response
- **>** spectral response 300-650 nm ($\lambda_{max} \sim 420$ nm)

PMT shielding and Light Guides

- ▶ high stray magnetic field ($\sim 300G$) on readout plane
- magnetic shielding of PMTs needed (0.8-1.3 mm)
- increase photon collection eff with LGs
- Plexiglass (n=1.49) solid guides
- Effective pixel size 8.5 mm

Readout Electronics

- 16 channel ASIC developped
- two amplification gains $(\times 1, 5)$
- dynamic range from 1-100 pe
- ▶ low consumption (~ 11 mW)

RICH velocity and charge determination

✓ Velocity obtained from θ_c measurement

- \checkmark β uncertainties :
 - pixel size (8.5 mm)
 - ► radiator thickness $(h \tan \theta_c)$ photon emission point unknown
 - ▶ radiator chromaticity, $n(\lambda)$

 $\frac{\Delta\beta}{\beta} = \frac{1}{N_{p.e}} \left(\tan \theta_c \Delta \theta_c \oplus \frac{\Delta n}{n} \right)$

		$\beta=1, Z=1$	
radiator	$\Delta n/n$	$\Delta \theta_c$	$\Delta eta / eta$
aerogel	\sim 0.11%	4 mrad	$\sim 1.3 \ 10^{-3}$
naf	$\sim 0.43\%$	4.1 mrad	$\sim 3.6 \ 10^{-3}$

Charge determination : $\begin{bmatrix}
Z^2 \propto \frac{N_{p.e}}{\varepsilon} \\
\varepsilon \equiv \text{ring efficiency}
\end{bmatrix}$

ring acceptance, γ absorption,...

- Z Uncertainties :
 - statistical : $\Delta N_{p.e} = \sqrt{N_{p.e} \left(1 + \sigma_{p.e}^2\right)}$
 - systematics from non-uniformities :
 - radiator : n, thickness, clarity, ...
 - detection : LG, PMT, temperature effects, ...

$$\Delta Z = \frac{1}{2} \sqrt{\frac{1 + \sigma_{p.e}^2}{N_0} + Z^2 \left(\frac{\Delta \varepsilon}{\varepsilon}\right)^2}$$

Aerogel tile uniformity requirements

thickness \sim 0.5 mm	refract index \sim 10 $^{-4}$	• Clarity \sim 5%
-------------------------	---------------------------------	---------------------

RICH prototype - Test Beam 2003

- CERN Indium (Z=49) primary beam with 158 GeV/c/n
- ✓ beam selection : A/Z = 2, 2.25, 2.35
- 8 days of data taking
- ✓ 10^7 events collected
- very narrow beam(< 1 mm most of time)
- ✓ many particle angles

Prototype RICH : 96 PMT's

<u>aims</u>

- evaluate rich performance
- test readout electronics (fight model)
- test aerogel and NaF radiators
- evaluate mirror reflectivity

RICH - Test Beam 2003 : aerogel properties

Tile uniformity

RICH - Test Beam 2003 : β reconstruction with agl

RICH - Test Beam 2003 : Z reconstruction with agl

Charge peaks

Charge uncertainty

RICH - Test Beam 2003 : mirror reflectivity

- A prototype mirror was tested
- Reflectivity measured from signal analysis of reflected and direct branches

RICH - Test Beam 2003 : β reconstr with NaF

Conclusions

- The AMS experiment to be installed in the International Space Station in 2008 will be equiped with a RICH
 - key role in astrophysics studies
 - Iarge range charge identifi cation
 - high accuracy in velocity
 - Detector is being assembled
 - thermal and vibration tests performed
 - > 60 % of photon detection cells assembled
 - reflector ready by the end of 2005
 - RICH design validated by intensive tests to a RICH prototype made of 96 photodetection cells
 - ✓ RICH integration in AMS scheduled to July 2006