# Astrophysics with the AMS-02 experiment

#### *Rui Pereira* (LIP - Lisbon)

#### on behalf of the AMS collaboration

e-mail address: pereira@lip.pt

HEPP-EPS 2005, Lisbon, 22 July 2005

# Astrophysics with AMS-02

- Astrophysics aims
- Physics requirements for AMS
- AMS experiment & AMS-02 detector
- Detector capabilities
  - Charge measurement
  - Velocity measurement
  - Mass identification
- AMS-02 prospects
- Conclusions



# Astrophysics aims

- Better knowledge of cosmic ray spectrum is needed
  - Hadronic component gives information on production, acceleration and propagation mechanisms
    - Secondary-to-primary ratios (d/p, <sup>3</sup>He/<sup>4</sup>He): test to propagation models
    - \* Confinement times (<sup>10</sup>Be/<sup>9</sup>Be): constraint to galactic halo models
    - Long period of observation will give information on solar cycle variations
  - Existence of antimatter domains might be inferred from direct detection of antinuclei
  - Dark matter signatures may be found in cosmic rays

# **Physics requirements for AMS**

### Astrophysics

#### Detection of a large range of nuclei (Z)

- Charge identification in large Z range
- Precise velocity measurement
- Rigidity measurement
- Ability to identify different isotopes

#### Antimatter

Detection of antinuclei would be a clear signal of the existence of cosmic antimatter

#### Dark matter

Signals:  $\overline{p}$ ,  $e^+$ ,  $\gamma$ ,  $\overline{d}$ 

- Charge identification
- Velocity & rigidity measurements
- Albedo rejection
- $\gamma$  detection
- Strong system redundancy

# The AMS experiment



 Final detector to be installed in the International Space Station

- AMS is a broad international collaboration (~ 500 members) for the detection of primary cosmic rays in space
- Successful test flight aboard space shuttle Discovery in June 1998
- Detector integration at CERN in 2006



AMS-02: detector to be installed in the ISS in 2008

HEPP-EPS 2005, Lisbon, 22 July 2005

### AMS-02 detector

- Has the following subdetectors:
  - Transition Radiation Detector
  - Time-of-Flight detector
  - Silicon Tracker
  - Ring Imaging Cherenkov detector
  - Electromagnetic Calorimeter
  - Anti-Coincidence Counter
- Detector capabilities:
  - Particle bending
    - Superconducting magnet (0.9 T)
  - Measurements of particle:
    - Rigidity (Tracker)
    - **Direction** (TOF, Tracker, RICH)
    - Velocity (RICH, TOF, TRD)
    - \* Charge (RICH, Tracker, TOF)
  - Trigger
    - ★ TOF, ECAL, ACC
- Total statistics: > 10<sup>10</sup> events



# Charge measurement

- Charge magnitude
  - Tracker, TOF give charge value by direct sampling of particle energy deposition:

$$\Delta E \propto Z^2$$

- ♦ RICH:
  - Charge estimated from number of photons in Cherenkov ring (also function of velocity):

$$N_{\gamma} \propto Z^2 \Delta L \left( 1 - \frac{1}{\beta^2 n^2} \right)$$

- Ring acceptance and other effects (e. g. mirror reflectivity) must be taken into account
- Charge signal
  - Particle bending information from Tracker
  - Albedo rejection from TOF, RICH





# Velocity measurement

#### TOF:

 Crossing time between scintillator planes is measured:



#### RICH:

• Opening of Cherenkov cone is function of velocity:  $\cos \theta_c = \frac{1}{2}$ 

### TRD:

• Energy of transition radiation is roughly proportional to the particle's Lorentz factor:

n

$$E_{\gamma} \sim \gamma ~(\mathrm{eV})$$

 This allows to distinguish very high velocity particles







### Velocity resolution

#### TOF

- Expected in AMS-02 (4 planes):
  ★ Z=1: Δt ~ 130 ps, Δβ/β ~ 4%
- 2003 test beam (2 planes):
  - ★ ∆t ~ 180 ps, Z=1
  - ★ ∆t ~ 100 ps for Z≥2

### RICH

- Expected in AMS-02:
  - \*  $\Delta\beta/\beta \sim 0.1\%$  for Z=1
  - \*  $\Delta\beta/\beta \sim 0.01\%$  for Z>10

#### 2003 test beam:

\*  $\Delta\beta/\beta = 0.09\%$  for Z=1



# Mass identification

- Rigidity (R) measurement from Tracker
  - Signal in tracker planes indicates particle bending in magnetic field
- Charge + rigidity  $\Rightarrow$  momentum:

$$p = RZ$$

![](_page_9_Figure_5.jpeg)

• Momentum + velocity  $\Rightarrow$  mass:

![](_page_9_Figure_7.jpeg)

 Isotopic separation relies on accurate mass identification

![](_page_9_Figure_9.jpeg)

### AMS-02 prospects: B/C ratio

Data from 2003 beam test:

• Charge identification up to  $Z \sim 30$  from both Tracker & RICH

- B/C may be identified in a large energy range
  - Result is significant for knowledge of cosmic ray propagation

![](_page_10_Figure_5.jpeg)

HEPP-EPS 2005, Lisbon, 22 July 2005

## AMS-02 prospects: isotopic ratios

#### Expected in AMS-02

- Isotopic separation of H, He, Be up to ~ 10 GeV/nucleon: major improvement on current data
- AMS data provide insight on cosmic ray physics
  - ♦ d/p, <sup>3</sup>He/<sup>4</sup>He, B/C: information on cosmic ray propagation
  - <sup>10</sup>Be/<sup>9</sup>Be: confinement times, galactic halo models

![](_page_11_Figure_6.jpeg)

### **Conclusions**

- AMS-02 will be installed on the International Space Station in 2008 to operate for a minimum of 3 years
- Data collected by AMS will have unprecedented precision and statistics:
  - ♦ Total of > 10<sup>10</sup> events
  - Charge separation up to  $Z \sim 30$
  - Velocity reconstruction with  $\Delta\beta/\beta \sim 0.1\%$  for Z=1
  - ♦ Isotopic separation up to ~ 10 GeV/nucleon
- AMS results will address key issues in cosmic ray astrophysics:
  - Propagation models
  - Confinement times
  - Solar cycle

![](_page_12_Picture_11.jpeg)