Isotope separation with the RICH detector of the AMS experiment

Rui Pereira

(LIP - Lisbon)

e-mail address: pereira@lip.pt

The AMS experiment

 Broad international collaboration for the detection of primary cosmic rays in space

The AMS experiment

Delivery to ISS scheduled for 2007

Data taking time: 3 years minimum

Main goals:

Detailed study of cosmic ray spectra

- AMS will provide an unprecedented statistics of charged cosmic ray measurements
- Precise velocity measurement allows isotope separation in a large energy range

Search for dark matter

 Anomalies in cosmic ray spectra may provide information on dark matter constituents

Search for antinuclei

 The presence of heavy antinuclei in cosmic rays may signal the existence of antimatter domains in the Universe

The AMS experiment

Major advantages of AMS:

- Out of atmosphere
- Particle discrimination up to TeV region
- Very good velocity resolution (~10⁻³)
- Charge separation up to Z~26
- Large acceptance (0.5 m² sr)
- Long duration (3 years minimum)
- Detector redundancy

AMS experiment

Physics issues

Confinement times & propagation

- Relative abundances of stable and unstable isotopes (e.g., ⁹Be and ¹⁰Be) provide a cosmic ray «clock» ⇒ information on cosmic ray origin, propagation
- Abundances of secondary cosmic rays (e.g., ²H, ³He), produced as spallation products, give information on the amount of matter crossed by cosmic rays before their detection

Antinuclei

- Production of antinuclei with Z>1 from ordinary matter is extremely unlikely \Rightarrow detection of \overline{He} should mean there is some other source
- Detection of heavier antinuclei like C would clearly indicate antimatter domains exist in the Universe

Physics issues

Dark matter

- Neutralino (χ) is the lightest SUSY particle
- Strong candidate for cold dark matter: abundant, massive, neutral particle
- Neutralino annihilation (χ + χ → ...) expected to take place in galactic halo, reaction products include e⁺, p, d, ... ⇒ several particle spectra might show neutralino contribution
- ◆ Production of low energy d (GeV region) expected, no other physical processes in this energy region ⇒ very clear neutralino signature
 - * Drawback: \overline{d} / \overline{p} ~ 10⁻⁵

Isotope ratios: previous experiments

Balloon experiments *IMAX, ISOMAX, SMILI, BESS...*

Space experiments Voyager, Ulysses, ISEE...

Isotope ratios: current data

Some existing results on isotope ratios:

- Limited statistics and energy ranges
- Dashed lines show models used for this simulation

RICH detector

- Proximity focusing detector
- Two radiators
 - ♦ NaF (n=1.334) central square
 - ♦ Aerogel (n=1.05) outer region

(see Luísa Arruda's talk)

RICH simulation data samples

• A large statistics was fully simulated on the RICH:

Z	Isotopes	No. events		Time
1	p, d	AGL+NaF events	1.6 x 10 ⁷	≈ 1 day
÷.		NaF only events	1.5 x 10 ⁷	≈ 1 week
2	³ He, ⁴ He	2.0 x 10 ⁶		≈ 1 day
4	⁹ Be, ¹⁰ Be	8.5 x 10 ⁵		≈ 1 year

- Setup tested: Aerogel (n=1.05) + NaF
 - Realistic radiator properties (from beam tests, etc.) were used
- Only events above geomagnetic cutoff were considered
 - Simulation takes this into account
 - Cutoff is higher at equator, lower at magnetic poles

Isotope separation procedure (He, Be)

- Simulated ratios ~ 0.1-0.4
- Mass reconstructed from p & β data
 - Mass resolution depends on energy
- Relative isotopic abundances determined for He, Be:
 - Separate mass fits for Aerogel & NaF populations, one fit for each energy channel
 - Overall mass region fit to 2 gaussians, width ratio assumed constant:

$$\star \sigma_1/\sigma_2 = m_1/m_2$$

Reconstruction results: ³He, ⁴He

Mass distributions

Isotope ratios

5th NWAP, Faro, 8-10 January 2005

Reconstruction results: ⁹Be, ¹⁰Be

Mass distributions

Isotope ratios

Isotope separation procedure (H)

- Simulated ratio: d / p ~ 10⁻²
- Relative isotopic abundances determined for H (protons+deuterons):
 - Two kinds of spectrum tested:
 - * Mass distribution
 - * Inverse mass distribution \rightarrow better
 - Fit to 2 gaussians not good for this case (N_p>>N_d, significant p tail in d region)
 - Gaussian fit performed on proton peak; fit to gaussian + noise (assumed constant in peak region) used for deuteron peak

Reconstruction results: p, d

5th NWAP, Faro, 8-10 January 2005

Mass resolution & separation power

5th NWAP, Faro, 8-10 January 2005

Reconstruction efficiencies

- Average number of hits $\propto Z^2$
- Strong dependence on event geometry
- Minimum no. hits (~3-4) needed for good reconstruction (cut at 3 hits in this analysis)
 - ⇒ critical issue for H, but not as important for He & Be
- Reconstruction efficiencies for high E_{kin} (%):

Isotope	Cut	Aerogel*	NaF
n	3 hits	80.0	23.7
þ	4 hits	68.9	11.2
440	3 hits	96.2	84.1
ne	4 hits	95.7	76.3
9 P o	3 hits	96.0	92.9
De	4 hits	96.0	92.9

Energy cuts for table				
E _{kin} > 10 GeV/n (AGL)				
E _{kin} > 12 GeV/n (NaF)				

AMS vs. previous experiments: H

- NaF radiator: allows a clear improvement on existing data at ~ 1 GeV
- Aerogel radiator: allows an extension of energy region to ~ 5 GeV
- Prospects from a single week (NaF) or day (Aerogel) of data
 - ♦ AMS will work for 3 years

AMS vs. previous experiments: He, Be

Major improvements also expected for other elements:

5th NWAP, Faro, 8-10 January 2005

Conclusions

- Results of Monte Carlo simulation of H, He and Be events in the RICH detector of AMS were analysed
- Isotopic separation was performed
 - Good results with «low» statistics (compared to AMS-02 total):

 \star ~ 1 day/week for H & He, ~ 1 year for Be

- Low isotopic ratio (~10⁻²) and low mass posed a problem for hydrogen ⇒ overcome by specific tools (e. g. inverse mass fits)
- Best mass resolutions ~ 2 % at 3 GeV/n (Aerogel), ~ 3 % at 1 GeV/n (NaF) for all elements tested
- Isotopic ratios may be calculated for 0.5–10 GeV/nucleon
- Good reconstruction efficiencies for high energy ⇒ tight cuts can always be applied to improve signal/background ratio
- Techniques presented here may also applied in the challenge of d / p separation
- AMS results will provide a major improvement on existing data

AMS may help answering some of today's most important issues in cosmology!