

The RICH detector of the AMS experiment

Velocity and Charge reconstruction

<u>Luísa Arruda</u> LIP -Lisboa

<u>Outline</u>

- The AMS experiment
- The RICH detector
- Velocity and Charge reconstruction methods
- **RICH prototype tests**
- Conclusions

AMS on the International Space Station

The Alpha Magnetic Spectrometer is a precision magnetic spectrometer scheduled to be installed in the International Space Station (ISS) by 2007, for three years. Its physical goals are:

> Search for cosmic antimatter, through the detection of antinuclei with |Z|≥2; for helium nuclei the upper limit of detection will be He/He<10⁻⁹;

Search for dark matter

Precision measurements on the relative abundance of different nuclei and isotopes of primary cosmic rays E<1 TeV</p>

AMS Spectrometer Capabilities

AMS Construction and Constraints:

<u>RICH detector</u>

The Ring Imaging Cerenkov of AMS is a proximity focusing detector with a dual radiator, a high reflectivity mirror and photomultiplier tubes

- Velocity measurement $\frac{\Delta\beta}{\beta} \sim 0.1\%$ (Z=1)Charge measurementZ~26 Δ Z~0.2
- Redundancy on albedo rejection

photomultiplier s & light guides

e/p separation

VNWAP, Faro, 8 Janeiro, 2005

luisa@lip.pt

Sodium Fluoride

aerogel

mirror

RICH Radiator

Cerenkov radiation

A charged particle travelling in a medium with a velocity higher than the light speed in the same medium produces Cerenkov radiation. $\cos \theta_c = \frac{1}{\beta n}$.

🗸 Radiator

Silica Aerogel n=1.05

Sodium Fluoride (NaF) n=1.334

Rayleigh scattering: directionality of Cerenkov photons lost (transparency decreases for UVs)

 $T \propto e^{-\frac{C-x}{\lambda^4}}$ C = clarity coefficient C = 0.0055 \mu m^4 cm^{-1} (n = 1.05)

VNWAP, Faro, 8 Janeiro, 2005

luisa@lip.pt

6

RICH Reflector

 ✓ ~33% of the photons emerging from the radiator are pointed outside the detection matrix. A reflector was designed to direct them to the matrix.

 \checkmark carbon fiber structure with Al and SiO₂ coating

Reflectivity >85% at 420 nm

Detection Matrix

- Photomultipliers
 - matrix with 680 PMT's
 - 4 X 4 multianode R7600-00-M16 (4.5 mm pitch)
 - > spectral response 300-650 nm (maximum at $\lambda = 420$ nm)
 - two readout amplifications (gain ×1, ×5)
 - Z = 1 30 Npe $\sim 1 10^4$ pe

Light Guides

Plexiglass (n=1.49) solid guides

Effective pixel size 8.5 mm

VNWAP, Faro, 8 Janeiro, 2005

luisa@lip.pt

<u>**RICH constraints**</u>

- To reach such a good resolution (accuracy) several aspects have to be controled:
- ✓ aerogel tiles:
 - tiles thickness uniformity
 - tiles optical characterization (clarity, refractive index)
 - aerogel aging
 - thermal, vaccum and vibration
- mirror reflectivity measured
- ✓ PMTs
 - ✓ thermal environment [-30,+50] °C
 - ✓ maximum residual magnetic field ~300 G

<u>θ reconstruction: a likelihood approach</u>

VNWAP, Faro, 8 Janeiro, 2005

luisa@lip.pt

0, reconstruction with the flight setup. MC simulation

Charge reconstruction

the number of Cerenkov radiated photons when a charged particle crosses a radiator path ΔL , depends on its charge Z

 $N \propto Z^2 \Delta L \left[1 - \frac{1}{\beta^2 n^2} \right]$

Their detection on the PMT matrix close to the expected pattern depends on:

<u>Charge reconstruction: MC simulation</u>

Simulated protons and heliums within AMS statistics

RICH PROTOTYPE

A small scale prototype with a detection matrix with 96 PMT's has been assembled:

Test electronics

Test radiators:

- Uniformity of tiles
- Light yield Detection range in Z
- Velocity resolution

Mirror integration

Tests

Cosmics ISN (Grenoble) 2001/2002

✓ October 2002 test beam at CERN with fragments from Pb ions 20 GeV/nuc

✓ October 2003 test beam at CERN with fragments of Indium beam 158 GeV/nuc

<u>Test Beam 2003: experimental setup</u>

VNWAP, Faro, 8 Janeiro, 2005

luisa@lip.pt

Data characterization

Data selection: background rejection

Beta reconstruction in the test beam

Charge reconstruction

Charge separation up to Z~26

 $\theta = 0^{\circ} \beta \sim 1$

<u>Mirror reflectivity evaluation with a run using AGL105 (0=15°)</u>

VNWAP, Faro, 8 Janeiro, 2005

luisa@lip.pt

20

Evaluation of the number of photoelectrons coming from photons:

<u>Mirror reflectivity evaluation with a run using AGL105 (0=15°)</u>

- ✓ The RICH detector was designed to provide AMS with very precise velocity measurement $\frac{\Delta\beta}{\beta} = 0.1\%$
- ✓ The RICH detector allows Zrec up to Z~26 (Iron)
- A RICH prototype has already been tested with cosmic ray events and with an heavy ion test beam at CERN Oct02/Oct03
 - Electronics validation
 - Reconstruction algorithms
 - Reflector monitoring

The construction of the full RICH detector will achieved at the end of this year