

Velocity and Charge Reconstruction with the RICH detector of the AMS experiment

Isotopic Separation for helium and beryllium elements

Maria Luísa Arruda/ Fernando Barão LIP (Laboratório de Instrumentação e Física de Partículas)

XIVENAA, Terceira, 23 Julho 2004

luisa@lip.pt

1

The AMS experiment: ✓ Physical aims ✓ Spectrometer The RICH detector Photon pattern tracing Velocity reconstruction Charge reconstruction Isotopic separation: ³He/⁴He and ¹⁰Be/⁹Be Conclusions

<u>Ams on the International Space Station</u>

AMS is a precision magnetic spectrometer scheduled to be installed in the International Space Station (ISS) by 2007, for three years. Its physical goals are:

Search for cosmic antimatter, through the detection of antinuclei with $|Z| \ge 2$; for helium nuclei the upper limit of detection will be He/He<10⁻⁹;

Search for dark matter

Precision measurements on the relative abundance of different nuclei and isotopes of primary cosmic ravs E<1 TeV</p>

<u>AMS on the International Space Station</u>

xIven/electromagnetic2calorimeter.luisa@lip.pt

AMS Spectrometer Capabilities

RICH detector

The Ring Imaging Cerenkov of AMS is a proximity focusing detector firstly designed with a low index radiator, a high reflectivity mirror and photomultiplier tubes

Velocity measurement $\frac{\Delta\beta}{\beta} = 0.1\%$ Charge measurement Z~25 Δ Z~20%

- Redundancy on albedo rejection
- e/p separation

XIVENAA, Terceira, 23 Julho 2004

RICH Radiator

Cerenkov radiation

A charged particle travelling in a medium with a velocity higher than the light speed in the same medium produces Cerenkov radiation. $\cos \theta_c = \frac{1}{2}$.

Radiator

Silica Aerogel n=1.03/1.05 3/2 cm of thickness Aerogel tiles 11.5 X 11.5 X 1 cm³ NaF n=1.334, 0.5 cm thickness NaF squa<u>re 34.5 x 34.5 x 0.5 cm³ placed</u> in the center

B n

Detection Matrix

Photomultipliers

 \succ

>

- matrix with 680 PMT's
 - 4 X 4 multianode R7600-M16
 - 4.5 mm pitch
 - spectral response 300-650 nm

maximum at λ = 420 nm

Light Guides Plexiglass (n=1.49) solid guides Effective pixel size 8.5 mm

XIVENAA, Terceira, 23 Julho 2004

Photon Pattern Tracing

Photon tracing includes:

Emission at a reference point with an opening angle θ_c and at a given azimuthal angle φ .

$$g'\left(\varphi; \, \theta_{c}\right) \xrightarrow{T(\theta, \phi)} g(\varphi; \, \theta_{c}, \, \theta, \, \phi)$$

escaping from radiator refracting at radiator boundary reflecting on mirror hitting detection plane

 $(\Phi_h)^2$

(Dh

 0_{m}

XIVENAA, Terceira, 23 Julho 2004

luisa@lip.pt

9

<u> θ_c reconstruction: a likelihood approach</u>

 \checkmark The AMS tracker provide particle direction (θ, ϕ) and the impact point at the RICH radiator

 \checkmark The photon pattern at the PMT matrix is derived as function of θ_c

 The hits associated to the particle are excluded

 \checkmark The maximization of a likelihood function provides the best θ_c angle

$$\mathsf{V}(\boldsymbol{\theta}_{c}) = \prod_{i=1}^{N_{hits}} P\{r_{i}(\boldsymbol{\varphi}_{i}(\boldsymbol{\theta}_{c}))\}$$

 $\mathbf{r}_i \equiv \mathbf{closest} \ \mathbf{distance} \ \mathbf{to} \ \mathbf{the} \ \mathbf{Cerenkov} \ \mathbf{pattern}$

 $P_i \equiv$ probability of a hit belong to the pattern

XIVENAA, Terceira, 23 Julho 2004

<u>θ reconstruction: event displays</u>

Simulated events: p=20 GeV/c/nucleon

XIVENAA, Terceira, 23 Julho 2004

luisa@lip.pt

11

<u>θ reconstruction: β resolution scaling</u>

Charge reconstruction

the number of Cerenkov radiated photons when a charged particle crosses a radiator path ΔL , depends on its charge Z

$$N \propto Z^2 \Delta L \left[1 - \frac{1}{R^2 r^2} \right]$$

Their detection on the PMT matrix close to the expected pattern depends on:

- radiator interactions (ϵ_{rad}):
- absorption and scattering
- geometrical acceptance (ϵ_{geo}):
- photons lost through the radiator lateral and inner walls
- mirror reflectivity
- photons falling into the non-active area
- light guide losses (ειg)
- PMT quantum efficiency (ε_{pmt}) $N_{pe} \propto Z^2 \Delta L \left(1 - \frac{1}{\beta^2 n^2}\right) \varepsilon_{pmt}$

Charge reconstruction method

- Cerenkov angle reconstruction
- \checkmark Photoelectron countage: the signal (p.e.) close to the reconstructed photon pattern is summed up $\Delta r < 1.3$ cm
- Photon detection efficiency
- Reconstruct electric charge

Charge reconstruction: simulated data

RICH PROTOTYPE

A small scale prototype with a detection matrix with 96 PMT's has been assembled:

Test electronics

Test radiators: > Uniformity of tiles

- Light yield
 - Detection range in Z
- Velocity resolution

Mirror integration

Tests

Cosmics ISN (Grenoble) 2001/2002

✓ October 2002 test beam at CERN with fragments from Pb ions 20 GeV/nuc

✓ October 2003 test beam at CERN with fragments of Indium beam 158 GeV/nuc

XIVENAA, Terceira, 23 Julho 2004

Test Beam 2003: experimental setup

XIVENAA, Terceira, 23 Julho 2004

Beta reconstruction in the test beam

Charge reconstruction

Charge separation up to Z~30

Future Physics Prospects with RICH

- Dark matter search
 - e⁺, p background rejection
 - Detection of antimatter (antinuclei)
 - charge identification
 - albedo rejection
 - strong system redundancy
 - Cosmic rays studies
 - confinement: radioactive isotopes (10Be/9Be)
 - propagation: isotopes ³He/⁴He
 - Detection of a large range of charged nuclei (Z)

Helium isotopic separation: Physical motivations

The propagation history of the helium can be probed by measuring the isotopic ratio ³He/⁴He

³He is essentially secondary and comes from the spallation of ⁴He in the ISM

Aerogel 1.030 will provide isotopic ratios from E_{kin} ~ 3 GeV/nuc

The integration of NaF in the RICH radiator will alow to measure isotopic ratios down to E_{kin} ~ 0.5 GeV/nuc

Beryllium isotopic separation: Physical motivations

Measurement of the ratio ¹⁰Be/⁹Be gives us information about confinement time of cosmic rays in the Galactic volume and is sensitive to different propagation models

 $\tau_{1/2}$ (¹⁰Be) ~ 1.5×10⁶ years

Light isotopic measurements before AMS:

done at relatively low energies

- <1.57 GeV/nuc (ISOMAX)
- based on a rather low statistics

XIVENAA, Terceira, 23 Julho 2004

<u>Simulation of helium and beryllium nuclei</u> Helium (Seo et al)

- Geomagnetic field taken into account: modulation of the nuclei energy with the ISS location
- Tracker momentum uncertainty folded ∆p/p ~ 2%

10000

Isotopic separation mass distribution (Helium)

XIVENAA, Terceira, 23 Julho 2004

Reconstructed isotopic ratios for He and Be

XIVENAA, Terceira, 23 Julho 2004

AMS reconstructed isotopic ratios compared with

<u>previous experiments</u>

XIVENAA, Terceira, 23 Julho 2004

luisa@lip.pt

26

- ✓ AMS will be installed on the ISS in 2007 for three years for antimatter and dark matter search
- ✓ The RICH detector was designed to provide AMS with very precise velocity measurement $\frac{\Delta\beta}{B} = 0.1\%$ in order to
 - Perform isotopic mass separation in an wider energy range 0.5 GeV/nuc up to 10 GeV/nuc
 - Contribute to e/p separation
 - The RICH detector allows Zrec up to Z~26 (Iron)
- ✓ A RICH prototype has already been tested with cosmic ray events and with an heavy ion test beam at CERN Oct02/Oct03
 - Electronics validation
 - Reconstruction algorithms