Particle identification with the AMS-02 RICH detector

L. Arruda, F. Barão, <u>Rui Pereira</u>*

(LIP - Lisbon)

* e-mail address: pereira@lip.pt

The AMS experiment

 Broad international collaboration for the detection of primary cosmic rays in space

Prototype flight in space shuttle (1998)

The AMS experiment

- Data taking: > 3 years on the International Space Station
- Final detector AMS-02 currently being assembled, should be ready by the end of 2008
- Main goals:
 - Detailed study of cosmic ray spectra
 - AMS will provide an unprecedented statistics of charged cosmic ray measurements between ~100 MeV and ~1 TeV
 - ★ Charge identification up to iron (Z=26)
 - Precise velocity measurement allows isotope separation in the GeV region
 - Search for dark matter
 - Anomalies in cosmic ray spectra may provide information on dark matter constituents
 - Search for antinuclei
 - * The presence of heavy antinuclei (Z \ge 2) in cosmic rays may signal the existence of antimatter domains in the Universe

AMS-02 detector

- Has the following subdetectors:
 - Transition Radiation Detector
 - Time-of-Flight detector
 - Silicon Tracker
 - Ring Imaging Cherenkov detector
 - Electromagnetic Calorimeter
 - Anti-Coincidence Counter
- Detector capabilities:
 - Particle bending
 - Superconducting magnet (0.9 T)
 - Measurements of particle:
 - Rigidity (Tracker)
 - **Direction** (ToF, Tracker, RICH)
 - ★ Velocity (RICH, ToF, TRD)
 - Charge (RICH, Tracker, ToF)
 - Trigger
 - ★ ToF, ECAL, ACC
- Total statistics: >10¹⁰ events
- Acceptance: ~ 0.5 m²sr

RICH detector

- Proximity focusing detector
- Two radiators
 - NaF (n=1.334) central square
 - Aerogel (n=1.05) outer region
- Ring acceptance increased with conical mirror (85% reflective)
- Detection matrix with 680 PMTs, each with 16 pixels
 - Pixel size: 8.5 mm

- Assembly of the RICH detector currently being finished at CIEMAT, Madrid
- AMS subsystems (including RICH) to be assembled at CERN

RICH detector: assembly

A few images of the RICH assembly...

RICH physics: velocity measurement

PASC Winter School, Sesimbra, 19 December 2007

RICH prototype

RICH prototype

- Detection matrix: 96 PMTs (~1/7 of final detector)
- Individual radiator tiles (NaF, several aerogel samples) tested in succession
- Mirror segment: 30° (1/12 of total), used in second beam test only

RICH prototype at cosmic-ray testing in Grenoble

- Tests performed using prototype:
 - Cosmic ray test at LPSC, Grenoble
 - Two beam tests at CERN

RICH prototype tests: setup

- First test:
 - Secondary beam produced from impact of primary 20 GeV/c lead beam on beryllium target
 - 5×10⁶ events recorded
- Second test:
 - Secondary beam produced from impact of primary 158 GeV/c indium beam on lead target
 - 11×10⁶ events recorded

RICH prototype tests: analysis

- First test beam selection:
 - p = 5 to 13 GeV/c (protons)
 - Studies on aerogel light yield as function of momentum:

$N_{\gamma} \propto 1 - \frac{1}{\beta^2 n^2}$

- Second test beam selection:
 - ♦ A/Z = 2, 2.25, 2.35
 - "Realistic" spectrum good for studies on charge separation
 - Several particle angles
 - Reflector tested
 - Studies on tile uniformity
 - Testing of readout electronics

RICH standalone reconstruction

- Ongoing study using simulated proton events
- Goal: event reconstruction using only data from the RICH detector
 - No Tracker or TOF data used
- 5 parameters for reconstruction:
 - matrix impact point (x_{matrix}, y_{matrix}), Cerenkov cone angles (θ, φ, θ_c)
- Likelihood function used for ring fitting
- PMT matrix crossing point identified by strong signal in matrix (much stronger than ring hits)
- Quality cuts applied for hint

RICH standalone reconstruction

- Based on grid of hints in parameter space

 combinations of emission points (in radiator), impact points (in PMT matrix), Cerenkov angles
- Large number of hints ⇒ minimization from all hints not possible in practice
- Our approach: likelihood calculated for all hints but minimization applied to the most promising ones only
- Several versions of hint grid procedure tested, looking for compromise between reconstruction quality and processing time
 - Version presented here uses 32 hints for emission point, 9 for impact point, 5 for Cerenkov angle; minimization applied for best 50 hints

grid of hints for emission point

RICH standalone reconstruction

Current results:

theta c bias as function of ring hits

5

bars show RMS of distributions

0 -1ł -2

-3

-4 -5

- Reconstruction of Cerenkov angle (\Rightarrow velocity) is feasible
- Bias ~0.3° due to tail on left
 - \star Significant bias (~1°) for vertical events, no bias for high inclinations
- No good track reconstruction \Rightarrow external track data needed

RICH reconstruction using ToF data

- ToF clusters provide hint required for reconstruction without Tracker
- ToF has 4 planes, RICH may act as «5th ToF plane»
- Quality cuts applied for ToF, RICH data (clean signals, geometry)
- Track assumed to be straight line
 - Better for high energies (smaller bending)

RICH reconstruction using ToF data

- Best results obtained using ToF and RICH data
- Error in Cerenkov angle from fit to peak:
 - $\sigma_{\theta c} = 0.36^{\circ}$ for high E_{kin} (was $\sigma_{\theta c} = 0.21^{\circ}$ using Tracker data)
- Good track reconstruction:
 - $\sigma_{\theta} = 0.85^{\circ}$ for high E_{kin}
 - Larger uncertainty but no significant bias at lower energies

• Resolution in θ is almost independent of inclination

Mass separation

- Cosmic-ray spectrum is dominated by protons (~90%)
 - Other particles with the same charge (e⁺, D) must be identified using mass-sensitive methods
 - Similar situation for negative-charged particles: high statistics of electrons and antiprotons, much smaller number of antideuterons
- Smaller components of cosmic-ray spectrum at each charge provide crucial information:
 - D/p: secondary vs. primary, data on secondary production, ISM properties
 - ¹⁰Be/⁹Be: radioactive vs. stable, data on galactic confinement times
 - D: possible dark matter signature, expected to be produced in neutralino annihilation
- Mass separation is needed!

Mass separation: procedure

- Goal: realistic simulation of RICH performance on mass separation in the context of the AMS detector
 - Full simulation of the AMS-02 detector used
- Procedure for event selection:
 - Preliminary data selection cuts to exclude bad reconstructions
 - Cuts on RICH data to refine sample quality
 - Evaluate mass separation capability
- Physics channels:
 - D/p case used, ongoing study
 - Previous studies of D/p, ³He/⁴He, ¹⁰Be/⁹Be cases with standalone simulation of RICH detector

Mass resolution

- Key issue for mass separation, depends on velocity and rigidity data
- Best resolution for protons: $\sigma_m/m \sim 2\%$ at lower energies (< 1 GeV/n for NaF, 2-3 GeV/n for aerogel)
- Similar results obtained for deuterons

PASC Winter School, Sesimbra, 19 December 2007

Mass separation

- Mass reconstructed using RICH velocity & Tracker rigidity
- Separation between proton and deuteron peaks visible up to ~ 8 GeV/nucleon
- RICH detector plays a major role in background reduction

D/p rejection factor

- Rejection factor higher than 10⁴ obtained for D/p separation in optimal region (E_{kin} ~ 3-5 GeV/nucleon) using aerogel radiator
- Estimate is currently limited by simulation statistics
- Results expected to be similar for antideuteron case

Physics prospects

- RICH data are essential for particle identification
 - RICH separates charges up to Z ~ 26
 - Mass measurement (from RICH velocity+Tracker data) allows isotope separation
 - Improvement in albedo rejection
- Expected in AMS-02
 - Isotope separation of H, He, Be up to ~ 10 GeV/nucleon: major improvement on current data
- AMS data to provide insight on cosmic ray physics
 - D/p, ³He/⁴He, B/C: information on cosmic ray propagation
 - ¹⁰Be/⁹Be: confinement times, galactic halo models

Conclusions

- RICH detector plays major role in AMS-02 particle identification and track reconstruction
 - Prototype tests confirm design principles:
 - * $\Delta\beta/\beta\sim10^{-3}$ for Z=1, 10⁻⁴ for Z>10, charge separation up to Z~26
 - Mass separation is essential to address several physics issues
 - ★ Based on RICH velocity & Tracker rigidity
 - ★ Separation of light isotopes (H, He, Be) possible in GeV region
 - Standalone reconstruction:
 - ★ Reconstruction of Cerenkov angle is feasible, with some bias
 - ★ Track reconstruction not possible
 - Using TOF data:
 - Good reconstruction of Cerenkov angle, although not as good as using Tracker data
 - Track reconstruction is possible
- AMS-02 will provide a major improvement on existing cosmic ray data
 - Assembly of RICH detector being finished at CIEMAT, Madrid
 - Integration of the global AMS-02 detector taking place at CERN, should be finished by the end of 2008