Standalone reconstruction with the AMS RICH detector: update

<u>Rui Pereira</u>, Luísa Arruda, Fernando Barão (LIP - Lisbon)

RICH standalone reconstruction

- Goal: event reconstruction using only data from the RICH detector
- No Tracker or TOF data used
- 5 parameters for reconstruction:
 - matrix impact point (x_{matrix}, y_{matrix}), θ, φ, θ_c
- Likelihood function used (similar to 1-parameter reconstruction)
- Sample used: proton events in the AMS-02 full simulation:
 - p > 10 GeV/c/nuc (β ≈ 1)
 - p < 10 GeV/c/nuc (β < 1)

RICH standalone reconstruction

- PMT matrix crossing point identified by strong signal in matrix (much stronger than ring hits)
- Quality cuts for hint:
 - Quotient between strongest and average PMT signal must be higher than 3 and lower than 10
 - Strongest PMT signal must be higher than 6 p.e.

Quality cuts: signal quotient

•
$$3 < S_{max} / S_{avg} < 10$$

- S_{max} = highest total signal in a PMT
- S_{avg} = average signal in PMTs hit

good events defined as having hint < 6 cm from real crossing point

AMS analysis meeting, Madrid, 17 July 2007

Quality cuts: strongest PMT signal

- S_{max} > 6 p.e.
 - S_{max} = highest total signal in a PMT

good events defined as having hint < 6 cm from real crossing point

AMS analysis meeting, Madrid, 17 July 2007

Situation in May 2007:

- Reconstruction performed starting from vertical hint (or almost vertical if impact signal was near the edge of the detection matrix) with β = 1
- Large bias in track reconstruction towards smaller θ , combined with significant fluctuations in the reconstructed angle for events with similar inclination, made reconstruction impossible, at least for Z = 1

First attempt: iterative method

- Successive minimizations based on the result of the previous one:
 - ★ Vertical hint for first iteration

 - ★ Same matrix impact point (from original hint) in all iterations
- Results did not improve with respect to original method

- New approach to standalone reconstruction: using several hints instead of only one, selecting best reconstruction by likelihood value and/or number of ring hits
 - Removes the implicit preference for vertical reconstructions and high velocity
 - Better coverage of parameter space
 - Drawback: much more time-consuming

- Grid of hints in parameter space hints are combinations of:
 - Different emission points in radiator
 - Different impact points in PMT matrix
 - Different Cerenkov angles
- Number of hints is large even if only a small number of values is considered for each parameter ⇒ performing minimization from all hints might not be possible in practice
- Approach used here: likelihood is calculated for all hints but minimization is only applied to the most promising ones
- Several versions of this hint-grid procedure were tested, looking for a compromise between reconstruction quality and processing time

- Version presented here uses:
 - 32 emission points, 28 aerogel + 4 NaF (square grid with 20 cm step, 6×6 points except corners)
 - points > 50 cm from vertical of matrix hint are discarded
 - 9 impact points (square grid with 1 cm step, 3×3 points where central point is matrix hint)
 - 5 Cerenkov angles corresponding to 68%, 76%, 84%, 92%, 100% of angle for β = 1

- Value of likelihood is calculated for all combinations of emission point, matrix impact point and Cerenkov angle
 - Effective depth of PMT impact signal (1.8 cm) is used
- Hints are sorted according to their likelihoods
- Best 50 hints are used as starting points for 5-parameter minimization procedures
- Results of 50 minimizations are sorted according to:
 - i) number of hits in ring
 - ii) likelihood value
- Result of best minimization is taken as final result of standalone reconstruction
- Same quality cuts of March/May version
- Applied to event sample with $\beta \approx 1$

Reconstruction quality: θ

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: θ , all events

- Average bias in θ reconstruction is now close to zero
 - Positive bias for small θ , negative bias for large θ
 - Reconstructed θ is, on average, close to simulated values
 - For a given angle, spread in reconstructed θ is ~5°

Reconstruction quality: θ , direct events

- Direct events (r_{hint} < 42 cm):</p>
 - Positive bias in θ: ~5°
 - Distribution as function of simulated θ shows that change in bias is due to smaller average θ (<θ>~12°): bias is similar for events with same angle

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: θ , mirror events

- Mirror events (r_{hint} > 55 cm):
 - Negative bias in θ , especially for events with few hits
 - Most events with a high number of hits come from this region due to their high acceptance
 - Again, similar bias for events with same angle

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: ϕ

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: ϕ , all events

- No bias in ϕ reconstruction
 - Spread decreases as number of hits increases
 - θ : decrease in 0°-20° region, stable for higher angles

Reconstruction quality: ϕ , direct events

- Direct events (r_{hint} < 42 cm):</p>
 - Spread ~50° is almost independent of number of hits
 - φ spread decreases to ~30° for θ ~ 20° (no data available for higher θ in this region)

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: ϕ , mirror events

- Mirror events (r_{hint} > 55 cm):
 - Significant decrease in spread as number of hits increases
 - Mixed behaviour of φ spread as function of θ: increase in φ tails could be due to confusion between direct and reflected branches

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: θ_c

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: θ_c , all events

- Visible bias in θ_c reconstruction
 - Difference between reconstructed and simulated angles peaks at zero, but lefthand tail is the largest one
 - Average bias of a few tenths of a degree, almost independent of number of ring hits
 - Larger bias (~1°) for vertical events, reaches zero for higher θ_____

Reconstruction quality: θ_c , direct events

- Direct events (r_{hint} < 42 cm):</p>
 - Higher average bias, essentially due to lower θ
 - Average bias ~0.7°

Reconstruction quality: θ_c , mirror events

- Mirror events (r_{hint} > 55 cm):
 - Bias close to zero due to larger average θ
 - Evolution with θ similar to what is seen using all events

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: x_{top-rad}

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: $x_{top-rad}$, all evts

- x coordinate at top of radiator:
 - Spread becomes smaller as number of ring hits increases
 - Some change with theta: some reduction up to $\theta \sim 20^\circ$, increase for higher angles
 - Similar results for y_{top-rad}

Reconstruction quality: $x_{top-rad}$, dir evts

- Direct events (r_{hint} < 42 cm):</p>
 - Similar spread for same number of hits
 - Larger spread than global sample at comparable θ regions due to lower number of hits

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: $x_{top-rad}$, mir evts

- Mirror events (r_{hint} > 55 cm):
 - Evolution with number of hits similar to what is seen using all events
 - Smaller spread than for direct events at similar θ (mirror events have higher number of hits)

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: y_{top-rad}

AMS analysis meeting, Madrid, 17 July 2007

Reconstruction quality: θ (no. hits)

Evolution of reconstructed θ for different numbers of hits:

bars show RMS of distributions

Reconstruction quality: θ (no. hits)

- Bias correction may improve quality of results (to be done)
- θ reconstruction
 still difficult for
 Z=1

Evolution of reconstructed θ with simulated θ is still quite slow

Even for 10 hits, a reconstructed value θ ~ 20° is within one standard deviation of the expected result for all angles in the 5°-30° range

bars show RMS of distributions

Reconstruction quality: $\beta < 1$

- New method also tested for a sample with lower β:
 - Similar quality of reconstruction with $\beta \approx 1$ in all variables
 - No significant bias in θ_c
 - Cuts exclude larger fraction of events

bars show RMS of distributions

Track rec using ToF: update

- ToF clusters may provide the hint that is needed for a reconstruction method without using the Tracker
 - Work on these reconstructions is currently underway
- Two ways to choose ToF clusters to be used for track:
 - 1) LIP method (presented in May): scan cluster coordinates to find an aligned set
 - 2) take clusters used for ToF velocity reconstruction
- Two reconstruction possibilities were considered:
 - ToF clusters only
 - ToF clusters + RICH particle signal, with RICH acting as «5th ToF plane»

Track rec using ToF: update

- ToF, RICH clusters used as reference points for track reconstruction
 - Track assumed to be linear (linearity increases with particle energy)
- Two approaches to uncertaities in ToF coordinates:
 - a) uncertainties taken from AMS CERN files (σ_x , $\sigma_y \sim 3$ cm for most events)
 - b) only ToF paddle coordinates used for fit (x coordinate for planes 2 & 3, y coordinate for planes 1 & 4), each assumed to have σ = 6cm/√12 = 1.73 cm
 ★ requires 4 ToF planes if RICH is not used, 2 or 3 if RICH is used
- Uncertainty on RICH coordinate taken from previous study on signal distribution:

Track rec using ToF: acceptance

- At high E_{kin} (>9 GeV/nuc), events having RICH ring: 0.32 m².sr
- Using clusters from velocity reconstruction:
 - Full data:
 - ★ ToF rec: 0.32 m².sr (all events), 0.28 m².sr (after cuts)
 - ★ ToF-RICH: 0.26 m².sr (all events), 0.09 m².sr (after cuts)
 - Paddles only:
 - ★ ToF rec: 0.19 m².sr (all events), 0.18 m².sr (after cuts)
 - ★ ToF-RICH: 0.31 m².sr (all events), 0.09 m².sr (after cuts)
- Using LIP method for cluster selection:
 - Full data:
 - ★ ToF rec: 0.18 m².sr (all events), 0.16 m².sr (after cuts)
 - ★ ToF-RICH: 0.06 m².sr (all events), 0.04 m².sr (after cuts)
 - Paddles only:
 - * ToF rec: $0.05 \text{ m}^2.\text{sr}$ (all events), $0.04 \text{ m}^2.\text{sr}$ (after cuts)
 - ★ ToF-RICH: 0.06 m².sr (all events), 0.04 m².sr (after cuts)

Track rec using ToF: θ resolution

- Uncertainties for θ reconstruction at $\beta \approx 1$ (still to be fine tuned):
- Using clusters from velocity reconstruction:

• Full data: TOF hint rec theta error, rec 5 tr etheta5 Entries 57994 Mean 0.2907 2000 RMS 1.31 * ToF rec: $\sigma_{\theta} = 1.31^{\circ}$ 1800 1600 $\sigma_{e} = 1.52^{\circ}$ ★ ToF-RICH: 1400 1200 Paddles only: 1000 * ToF rec: $σ_{\theta} = 2.10^{\circ}$ 800 600 ***** ToF-RICH: $\sigma_{\theta} = 1.78^{\circ}$ 400 200 Using LIP method for cluster selection: 96 -8 -6 -4 -2 2 4 6 8 10 0 Full data: TOF hint rec theta error, rec 1 tr etheta1 Entries 8970 ★ ToF rec: $\sigma_{\theta} = 2.13^{\circ}$ Mean 0.05855 RMS 0.9042 500 $\sigma_{\mu} = 0.90^{\circ}$ ★ ToF-RICH: Paddles only: 300 • ToF rec: $\sigma_{\theta} = 1.67^{\circ}$ 200 ★ ToF-RICH: $\sigma_{\theta} = 1.62^{\circ}$ 100 <u>9</u>6 8 10 -8 -6 -4 2 6 -2 0 4

Track rec using ToF: θ_c resolution

• Error in θ_c (after cuts), from fit to peak using LIP method with full data: $\sigma_{\theta c} = 0.36^{\circ}$ compared to $\sigma_{\theta c} = 0.21^{\circ}$ for reconstruction using Tracker data

Conclusions

- New method for standalone reconstruction was developed
 - Advantages:
 - Sensitivity to particle direction (θ, φ), improving with number of hits, but significant tail of uncorrelated directions
 - * Approximately unbiased estimator for Cerenkov angle (on average over all directions), $\sigma_{\theta c} \sim 1^{\circ}$
 - ★ Effective over a large range of θ_c , not only for $\beta \approx 1$
 - Disadvantages:
 - Very slow (~30× slower than standalone reconstruction with vertical hint), essentially due to repeated minimization procedures
 - \star No improvement in θ_{c} resolution with respect to previous standalone reconstruction
 - **\star** Significant bias in θ remains, but should be correctable
 - * Reconstruction of events with Z = 1 still difficult
- Work on TOF-based reconstruction continues
 - Resolution: $\sigma_{\theta} \sim 1^{\circ}-2^{\circ}$, $\sigma_{\theta c} \sim 0.4^{\circ}$ for $\beta \approx 1$