Track reconstruction in AMS: RICH standalone and RICH+TOF

<u>Rui Pereira</u>, Luísa Arruda, Fernando Barão (LIP - Lisbon)

Motivation

- Standard track reconstruction in AMS is based on Silicon Tracker data
- It is important to have an alternative method for track reconstruction in AMS without Tracker data, e. g.:
 - if the Tracker system is absent
 - if there is no magnetic field
- Data useful for track reconstruction include
 - TOF clusters
 - RICH signal (ring hits, particle crossing signal)

RICH standalone reconstruction

- Goal: event reconstruction using only data from the RICH detector
- No Tracker or TOF data used
- 5 parameters for reconstruction:
 - matrix impact point (x_{matrix}, y_{matrix}), θ, φ, θ_c
- Likelihood function used (similar to 1-parameter reconstruction)
- Sample used: proton events in the AMS-02 full simulation with $p > 10 \text{ GeV/c} (\beta \approx 1)$

RICH standalone reconstruction

- PMT matrix crossing point identified by strong signal in matrix (much stronger than ring hits)
- Quality cuts for hint:
 - Quotient between strongest and average PMT signal must be higher than 3 and lower than 10
 - Strongest PMT signal must be higher than 6 p.e.

Standalone reconstruction quality

- Main problem: strong bias in θ reconstruction
 - Bias increases with θ , spread also increases
 - Reconstructed θ is, on average, about half of simulated angle
 - Bias is smaller for events with higher number of hits
 - * Still, $\Delta \theta \sim 7^{\circ}$ for events with 10 or more hits
 - Note: corrections on effective depth of light guide signal (average value of 1.8 cm used here) were tested, with no significant changes on reconstruction guality

Standalone reconstruction: new results

Evolution of reconstructed θ (component along correct track only) for different numbers of hits shows degenerate region at 10°-30°:

Standalone reconstruction: new results

Evolution of reconstructed θ for different numbers of hits:

bars show RMS of distributions

Standalone reconstruction: new results

- Evolution of reconstructed θ with simulated θ is extremely slow
- Even for events with 10 hits, a reconstructed value θ ~ 8°-10° is within one standart deviation of the expected result for all angles in the 0°-30° range
- Reconstruction of θ appears not to be possible for Z = 1

bars show RMS of distributions

Track reconstruction using TOF

 TOF clusters may provide the hint that is needed for a reconstruction method without using the Tracker

- TOF clusters used as reference points for track reconstruction
- Track assumed to be linear
 - linearity increases with particle energy
- Two reconstruction possibilities were considered:
 - TOF clusters only
 - TOF clusters + RICH particle signal

TOF track reconstruction

- Search for a TOF track:
 - All lines defined by pairs of clusters in planes 1, 4 are tested for nearby clusters in planes 2, 3 (cluster point < 5 cm from line as measured in the horizontal plane)
 - If at least one of the planes 2, 3 has a nearby cluster, the line is considered a TOF track candidate (3- or 4-plane)
 - Pairs of clusters in planes 2, 4 are tested to find possible track candidates where plane 1 has no cluster
 - RICH signal is ignored

TOF track reconstruction

- TOF track candidate is accepted in one of two cases:
 - Exactly one 4-plane track candidate exists
 - Exactly one 3-plane track candidate exists and no 4-plane track candidate was found
- Final TOF track is obtained from x-z and y-z fits to the set of cluster points used, considering each plane's resolution in x and y

TOF+RICH track reconstruction

- Search for a TOF+RICH track:
 - Procedure similar to TOF-only case, but TOF plane 1 and RICH cluster (strongest hit) are now used as references
 - Lines connecting clusters in plane 1 with RICH cluster are tested for nearby clusters in planes 2, 3, 4 (cluster point < 5 cm from line as measured in the horizontal plane)
 - If at least two of the planes 2, 3, 4 has a nearby cluster, the line is considered a TOF-RICH track candidate (3- or 4plane)
 - Lines connecting clusters in plane 2 with RICH cluster are tested to find possible track candidates where plane 1 has no cluster

TOF+RICH track reconstruction

- TOF+RICH track candidate is accepted in one of two cases:
 - Exactly one 4-plane track candidate exists
 - Exactly one 3-plane track candidate exists and no 4-plane track candidate was found
- Final TOF+RICH track is obtained from x-z and y-z fits to the set of cluster points used, considering each plane's resolution in x and y

TOF+RICH track reconstruction

- 5-parameter RICH reconstruction (standalone algorithm) applied to obtain θ_c
 - Final track used as hint for θ_c reconstruction
 - Track points at top and bottom of RICH allowed to change up to 1 cm from hint positions:

AMS analysis meeting, Madrid, 24-25 May 2007

TOF & TOF+RICH rec: statistics

- Quality cuts applied for event selection:
 - TOF signal:
 - No more than 5 clusters in TOF
 - RICH hint:
 - Quotient between strongest and average PMT signal must be higher than 3 and lower than 10
 - * Strongest PMT signal must be higher than 6 p.e.
- For events having a RICH ring and $\beta \approx 1$ (E_{kin} > 9 GeV/nucleon), after applying cuts on TOF and RICH data:
 - 17.2% have a valid TOF reconstruction
 - 12.8% have a valid TOF+RICH reconstruction
 - 8.3% have valid TOF and TOF+RICH reconstructions (sample presented here)

TOF vs. TOF+RICH: θ comparison

• Reconstruction using TOF+RICH is much better than the one using TOF clusters only (2.13° vs. 0.85° for $\beta \approx 1$)

after quality cuts on TOF, RICH signals

TOF vs. TOF+RICH: ϕ comparison

Reconstruction using TOF+RICH is much better than the one using TOF clusters only (7.71° vs. 3.24° for $\beta \approx 1$)

RICH signals

TOF+RICH: *θ* reconstruction

- Results at high E_{kin} (>9 GeV/nuc):
 - No significant bias
 - $\sigma_{\theta} = 0.85^{\circ}$
- Larger uncertainty but no significant bias at lower energies
- Resolution in θ is almost independent of inclination

after quality cuts on TOF, RICH signals

TOF+RICH: *\phi* reconstruction

- Results at high E_{kin} (>9 GeV/nuc):
 - No significant bias
 - σ_φ = 3.24°
- Larger uncertainty but no significant bias at lower energies
- Resolution in φ is depends strongly on inclination

after quality cuts on TOF, RICH signals

TOF+RICH: θ_c reconstruction

- Results at high E_{kin} (>9 GeV/nuc):
 - No significant bias
 - $\sigma_{\theta c} = 0.71^{\circ} = 12 \text{ mrad}$
 - = $3 \times$ Tracker resolution
- Resolution in θ_c is better for rings with more hits
- Reconstruction quality is lower for events with a high number of noisy hits

after quality cuts on TOF, RICH signals

TOF+RICH: θ_c reconstruction (cont'd)

- Bias towards larger θ_c becomes significant at lower energies (bias >0.5° below 6 GeV/nuc)
 - Average is shifted due to high angle tail
- Resolution in θ_c is almost independent of inclination

after quality cuts on TOF, RICH signals

Effect on separation power

- Mass resolution σ_m is directly proportional to $\sigma_{\theta c}$
- σ_{θc} using TOF+RICH track being
 ~ 3 times worse implies
 reduction of separation power by
 a factor 3
- If mass separation is assumed to be possible where $\Delta m/\sigma_m > 2.5$, then using TOF+RICH track:
 - He separation will only be possible up to ~ 5 GeV/nuc
 - Be separation might not be possible

Conclusions

- Standalone reconstruction:
 - Reconstructed θ has a large bias towards lower values
 - Plateau region for intermediate θ, together with large fluctuations of reconstructed angle for events with similar inclinations, imply that this method of standalone reconstruction will not work for single-charged particles ⇒ external track element is needed
- TOF-based reconstruction:
 - It is possible to obtain a reliable track from TOF or TOF+RICH cluster data for ~10% of events with a RICH ring
 - * TOF reconstruction, 3 or 4 planes: $\sigma_{\theta} \sim 2^{\circ}$, $\sigma_{\phi} \sim 8^{\circ}$
 - Track quality improves significantly when RICH light guide signal is included
 - * TOF+RICH reconstruction, 4 or 5 planes: $\sigma_{\theta} \sim 1^{\circ}$, $\sigma_{\phi} \sim 4^{\circ}$
 - No significant bias for θ and φ reconstructions even at lower E_{kin}
 - Track obtained from TOF+RICH may be used to obtain θ_c from constrained 5-parameter reconstruction
 - * $\sigma_{\theta c} \sim 0.7^{\circ}$ = 12 mrad at high E_{kin} (3 × Tracker uncertainty)
 - * bias in θ_c becomes large at lower energies (< 6 GeV/nucleon)