Standalone reconstruction with the AMS RICH detector

<u>Rui Pereira</u>, Luísa Arruda, Fernando Barão (LIP - Lisbon)

Standalone reconstruction

- Goal: event reconstruction using only data from the RICH detector
 - No track data
- 5 parameters for reconstruction:
 - matrix impact point (x_{matrix}, y_{matrix}), θ, φ, θ_c
- Likelihood function used (similar to 1-parameter reconstruction)
- Sample used: proton events in the AMS-02 full simulation with p > 10 GeV/c ($\beta \approx 1$)

Reconstruction hint

- PMT matrix crossing point identified by strong signal in matrix (much stronger than ring hits)
- Hint with no track data (unlike Dec. 2006 method):
 - x-y hint given by barycentre of strongest PMT signal
 - Vertical track used as starting point for minimization (in the case of outer impacts a slightly outward track is used to reach the radiator)
 - PMT point must remain within 3 cm of initial hint
- Quality cuts for hint:
 - Quotient between strongest and average PMT signal must be higher than 3 and lower than 10
 - Strongest signal must be higher than 6 p.e.

Quality cuts: signal quotient

Quality cuts: strongest PMT signal

good events defined as having hint < 6 cm from real crossing point

5

Quality cuts: noisy hits

 Events with >4 noisy hits (non-ring, non-particle) are excluded

Excludes
18% of good events
52% of bad events

3 cuts exclude 33% of good events 99% of bad events

good events defined as having hint < 6 cm from real crossing point

AMS RICH meeting, Madrid, 22 March 2007

Error in PMT hint (x coordinate)

5-parameter reconstruction examples

Same event reconstructed with track data (1-parameter) and in the standalone mode (5-parameter):

5-parameter reconstruction examples

Same event reconstructed with track data (1-parameter) and in the standalone mode (5-parameter):

Types of events

- Reconstruction quality studied for three samples (after applying quality cuts):
 - All events
 - Direct events (r_{hint} < 42 cm)
 - Mirror events (r_{hint} > 55 cm)

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: θ

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: θ , all events

- Strong bias in θ reconstruction
 - Bias increases with θ , spread also increases
 - Reconstructed θ is, on average, about half of simulated angle
 - Bias is smaller for events with higher number of hits
 - \star Still, $\Delta\theta$ ~ 7° for events with 10 or more hits

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: θ , direct events

- Direct events (r_{hint} < 42 cm):</p>
 - Smaller bias, about 4° for events with 7 or more hits
 - Distribution as function of simulated θ shows that reduction in bias is due to smaller average θ: bias is similar for events with same angle

Reconstruction quality: θ , mirror events

- Mirror events (r_{hint} > 55 cm):
 - Larger bias due to larger average θ
 - Most events with a high number of hits come from this region due to their high acceptance
 - Again, similar bias for events with same angle

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: ϕ

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: ϕ , all events

No bias in ϕ reconstruction

- Spread decreases as number of hits increases
- Mixed behaviour of ϕ spread as function of θ : decrease in 0°-15° region due to reduction in peak width followed by increase in 20°-35° region due to increase of tails (point for 35°-40° has very low statistics)

Reconstruction quality: ϕ , direct events

- Direct events (r_{hint} < 42 cm):</p>
 - Spread ~50° is almost independent of number of hits
 - φ spread decreases to ~30° for θ ~ 20° (no data available for higher θ in this region)

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: ϕ , mirror events

- Mirror events (r_{hint} > 55 cm):
 - Strong decrease in spread as number of hits increases
 - Mixed behaviour of φ spread as function of θ: increase in φ tails could be due to confusion between direct and reflected branches

Reconstruction quality: θ_c

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: θ_c , all events

- Significant bias in θ_c reconstruction
 - Average bias slightly under 1°, almost independent of number of ring hits
 - No bias for vertical events, reaches 1.5° for higher θ

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: θ_c , direct events

- Direct events (r_{hint} < 42 cm):</p>
 - Lower average bias, essentially due to lower θ
 - Average bias ~0.5° for high number of hits

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: θ_c , mirror events

- Mirror events (r_{hint} > 55 cm):
 - Larger bias due to larger average θ
 - Evolution with θ similar to what is seen using all events

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: x_{top-rad}

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: x_{top-rad}, all evts

- x coordinate at top of radiator:
 - Spread becomes smaller as number of ring hits increases
 - Strong increase in spread with theta
 - Slight bias (< 1 cm) possibly due to reconstruction method
 - Similar results for y_{top-rad}

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: $x_{top-rad}$, dir evts

- Direct events (r_{hint} < 42 cm):</p>
 - Smaller spread for same number of hits due to lower θ
 - Similar spread of global sample at comparable θ regions

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: $x_{top-rad}$, mir evts

- Mirror events (r_{hint} > 55 cm):
 - Larger spread due to larger average $\boldsymbol{\theta}$
 - Evolution with θ similar to what is seen using all events
 - Spread slightly smaller than what is seen for direct events (mirror events have higher number of hits)

AMS RICH meeting, Madrid, 22 March 2007

Reconstruction quality: y_{top-rad}

AMS RICH meeting, Madrid, 22 March 2007

Conclusions & future work

- Standalone reconstruction in the AMS RICH has been studied
- Main problem is θ reconstruction strong bias towards lower values
 - Bias is smaller for central events
 - Events with high number of hits have smaller bias
- Bias in θ_c (related to bias in θ)
 - Reconstructed θ_c is typically ~1° higher than simulated value
 - resolution in $\theta_c \sim 1^\circ$ (4 × typical resolution for 1-parameter rec)
- Different (θ, θ_c) pairs can produce almost degenerate rings
- Correlation between simulated and reconstructed
 - Uncertainty is ~30°-60° for typical proton events
- Future work will include:
 - Improvements on standalone reconstruction procedure to reduce bias in θ
 - Study of higher charges to gauge the evolution of bias with number of hits