Latest developments on particle identification with the RICH detector in the AMS-02 simulation

<u>Rui Pereira</u>, Luísa Arruda, Fernando Barão, Patrícia Gonçalves

(LIP - Lisbon)

Mass separation studies

- Goal: realistic simulation of RICH performance on mass separation in the context of the AMS detector
- Full AMS-02 simulation used
- Procedure:
 - Establish a set of wide pre-selection cuts
 - Study and optimize RICH specific cuts
 - Evaluate mass separation capability
- Physics channels:
 - D/p case used, ongoing study
 - ♦ ³He/⁴He in future work

Data samples and event weights

- Data samples from AMS-02 simulated events:
 - Low momentum proton and deuteron samples
 - * protons: 3.1 \times 10⁸ events, 0.5-10 GeV/c/nucleon, log spectrum
 - ★ deuterons: 5.6 × 10⁷ events, 0.25-10 GeV/c/nucleon, log spectrum
 - High momentum proton data samples
 - * protons: 1.3×10^8 events, 10-200 GeV/c/nucleon, log spectrum
 - No deuteron files available for higher momenta
 - Not really necessary if region of study is clearly under 10 GeV/c/nucleon
- Event weights (for mass distributions only):
 - Events are weighted according to their spectra (weights are also function of simulated energy)
 - Theoretical spectra used:
 - * protons: $dN/dE_{tot} \propto E_{tot}^{-2.7}$, reference value for flux as given in Review of Particle Physics
 - deuterons: linear interpolation of D/p ratios according to Seo et al. (same model used in studies with the standalone RICH simulation)

Simulated spectra

Simulated proton and deuteron spectra:

AMS RICH meeting, Madrid, 12 December 2006

LIP analysis: previous situation

- At the March 2006 meeting, a set of cuts was already in place
- Pre-selection cuts:
 - Number of particles
 - Tracker data (planes used, rigidity, Z, ...)
 - TOF data (planes used, β, Z, ...)
 - Additional data from ACC, TRD
- RICH cuts:
 - Geometrical acceptance
 - Number of hits
 - Ring probability
 - Ring signal
 - RICH-ToF β consistency
 - RICH β cross-check (CIEMAT & LIP reconstructions)
 - Z measurement
- Rejection factor ~10²-10³ (agl)

LIP analysis: new features

- New tools from LIP analysis are currently being developed and applied to files of reconstructed events in AMS-02 simulation:
 - LIP charge reconstruction (also implemented in RICH standalone simulation)
 - 3-parameter β reconstruction
 - 5-parameter β reconstruction
 - Calculation of hit distances to reconstructed rings (1-, 3-, 5parameter)
 - Studies on particle impact point in detection matrix
 - Comparison with particle signal
 - Optimization of effective impact matrix depth
 - Extension to the TOF mass reconstruction range

 LIP charge reconstruction applied to results of LIP velocity reconstruction data

AMS RICH meeting, Madrid, 12 December 2006

Charge data help exclude events with bad reconstructions:

AMS RICH meeting, Madrid, 12 December 2006

- Ring acceptances are calculated as part of the charge estimation
- Detailed calculation: ring width taken into account
- Total acceptance = direct + 0.85 × reflected

TOTAL ACCEPTANCE

- Ring acceptances are calculated as part of the charge estimation
- Detailed calculation: ring width taken into account
- Total acceptance = direct + 0.85 × reflected

DIRECT ACCEPTANCE

- Ring acceptances are calculated as part of the charge estimation
- Detailed calculation: ring width taken into account
- Total acceptance = direct + 0.85 × reflected

REFLECTED ACCEPTANCE

- Motivation: reconstruction of events with a bad track
- First approach, 3-parameter β reconstruction:
 - Track direction is still used, position is not
 - Free parameters: x_{matrix} , y_{matrix} , θ_{c}
 - Fixed parameters: θ, φ (from tracker)
- Second approach, 5-parameter β reconstruction:
 - Track data are abandoned
 - Free parameters: x_{matrix}, y_{matrix}, θ, φ, θ_c
- Result for 1-parameter β reconstruction given as initial hint
- Likelihood function used (similar to 1-parameter reconstruction)

 Additional parameters improve reconstruction quality for some events:

 Additional parameters improve reconstruction quality for some events:

 Additional parameters improve reconstruction quality for some events:

 Additional parameters improve reconstruction quality for some events:

- Error in velocity measurements:
 - Error increase (esp. tails) as number of parameters increases
 - Slight bias (<1 \times 10⁻⁴) for 1-par, increases to ~3 \times 10⁻⁴ in 3,5-par cases

- Error in velocity measurements:
 - Smaller error in selected events (namely because 4 hits required)
 - No significant change in bias

AMS RICH meeting, Madrid, 12 December 2006

- Fraction of tail events:
 - Much higher in 3-, 5-parameter reconstructions when number of hits is low, difference decreases for higher number of hits

- Compatibility between velocity measurements:
 - 1-par vs. 3-par

AMS RICH meeting, Madrid, 12 December 2006

- Compatibility between velocity measurements:
 - 1-par vs. 3-par, after cuts (including agreement btw 1,3,5-par)

AMS RICH meeting, Madrid, 12 December 2006

- Compatibility between velocity measurements:
 - 1-par vs. 5-par

AMS RICH meeting, Madrid, 12 December 2006

- Compatibility between velocity measurements:
 - 1-par vs. 5-par, after cuts (including agreement btw 1,3,5-par)

AMS RICH meeting, Madrid, 12 December 2006

- Compatibility between velocity measurements:
 - 3-par vs. 5-par

AMS RICH meeting, Madrid, 12 December 2006

- Compatibility between velocity measurements:
 - 3-par vs. 5-par, after cuts (including agreement btw 1,3,5-par)

AMS RICH meeting, Madrid, 12 December 2006

Comparison of reconstructed angle distributions:

- Difference between reconstructed angles:
 - θ_c, 1-par versus 3-par

- Difference between reconstructed angles:
 - θ_c, 1-par versus 5-par

- Difference between reconstructed angles:
 - θ_c, 3-par versus 5-par

- Difference between reconstructed angles:
 - θ, 1-par versus 5-par

Hit distances to reconstructed rings

- Calculated for each of the three LIP β reconstructions (1-, 3-, 5-parameter)
- Hit distances become smaller as number of parameters increases
 - Behaviour was expected: larger number of parameters allows reconstruction to find rings that have a better agreement with hit data

Hit distances to reconstructed rings

 Effect of free parameters is stronger in events with few hits:

AMS RICH meeting, Madrid, 12 December 2006

Number of ring hits

- Number of ring hits tends to increase in 3,5-par distribs.:
 - 1-par vs. 3-par

Number of ring hits

- Number of ring hits tends to increase in 3,5-par distribs.:
 - 1-par vs. 5-par

Number of ring hits

- Number of ring hits tends to increase in 3,5-par distribs.:
 - 3-par vs. 5-par

Light guide particle impact point

- Particle signal in PMT matrix provides independent information on its trajectory
- Comparison between reconstructed track and particle signal is useful to find events with bad Tracker data
- AMS-02 files have no data on the «real» (simulated) impact point

Effective matrix impact depth

- Optimization of effective impact point depth needed to make good comparison between Tracker data and particle signal in PMT matrix
 - Possible hint for standalone reconstruction
- Hits tagged as particle-associated if near (< 5 cm from) particle entry point at top of light guides
 - Entry point from Tracker data
 - 5 cm window >> expected shift in impact point due to optimization
- Scan in range of possible z_{impact} values:
 - Impact point coordinates (x_{impact}, y_{impact}) calculated from Tracker data
 - Combined distribution, for all particle-associated hits of all events (with associated n_{pe}), of differences between hit and impact coordinates:
 - ★ X_{hit}-X_{impact}
 - * Y_{hit}-Y_{impact}
 - Gaussian fit to distributions
 - Optimal effective impact point should have the lowest σ in both axes

Effective matrix impact depth

- Top of light guides is at z = -122.9 cm (in global AMS-02 coords)
- 71 points tested for z_{impact}: -128 to -121 cm with 0.1 cm step
- Quadratic fit used to find minimum
- Effective impact point is at z_{impact} = -124.7 cm, that is, at 1.8 cm depth
- Excellent agreement between x and y results
 - ◆ z_{imp}(x) = -124.72 cm
 - ◆ z_{imp}(y) = -124.69 cm
- Agreement also on optimal resolution in both coordinates:
 - σ_x = 0.524 cm
 - σ_y = 0.531 cm

LIP analysis: new cuts

- New cuts included in event selection since March 2006
 - Pattern robustness confirmed by agreement between different algorithms:
 - All β reconstructions (CIEMAT, LIP-1,3,5-parameter) must find a ring
 - Reconstructed velocity: results of both 3-par & 5-par reconstructions should differ from 1-par by less than 0.3% (aerogel), 1% (NaF)
 - ★ Minimum of 4 ring hits (instead of 3) in each reconstruction
 - Number of hits outside ring (excluding particle hits) is no greater that 2 (NaF), 4 (aerogel) in each of the LIP β reconstructions
 - Plays major role in excluding noisy events where random «false rings» become much more likely

LIP analysis: new cuts

- New cuts included in event selection since March 2006
 - Additional cut on near non-associated hits: $\Sigma_i 1/d_i^2 < 0.1$, d_i is the hit distance to the reconstructed ring in cm

LIP analysis: new cuts

- New cuts included in event selection since March 2006
 - LIP charge reconstruction must give good result: Z_{rec} = 0.5-1.5 in NaF, Z_{rec} = 0.6-1.4 in aerogel
 - Excludes e.g. events where a strong signal from particle impact is mistakenly associated to a Cerenkov ring
 - * Refinement of previous cuts on total ring signal
 - Ring acceptance > 20% (NaF), > 40% (aerogel)
 - Events with very small acceptance are prone to have bad velocity and charge reconstructions
- Cleaner sample, but lower acceptance
 - Increases need for using higher statistics in analysis
 - Development of a second set of (broader) cuts is under consideration

reconstructed charge for events with low acceptance

LIP analysis: D/p mass separation

Before RICH cuts

After RICH cuts

NaF

- Results for mass separation
- Weighted inverse mass distributions

NaF events, Ekin = 1.32-1.58 GeV/nucleon

0.6

0.8

1

1.2

1.4

1.6

inverse mass (1/GeV)

1.8

Events (weighted sum) 10 10 10

10

10-2

10⁻³

0.2

0.4

 Total "=" w_pN_p+w_dN_d+w_{hp}N_{hp}
(each event has different weight)

LIP analysis: acceptance

- Additional cuts have reduced the final acceptance
- Current figures for this analysis above aerogel threshold:
 - ~ 0.03 m²sr for protons
 - ~ 0.02 m²sr for deuterons

LIP analysis: rejection factor (aerogel)

- Rejection factor for D/p separation in aerogel > 10³ for E_{kin} between 3 and 6 GeV
 - Should be at least ~10⁴ around 3 GeV (no noise events fall in that region even with broader cuts)
- Additional statistics needed to give better estimates and evaluate further improvements

AMS RICH meeting, Madrid, 12 December 2006

LIP analysis: rejection factor (NaF)

- Rejection factor for D/p in NaF > 10^2 for E_{kin} between 1 and 3 GeV
- Additional statistics also needed in this case

TOF mass reconstruction

- TOF data on velocity combined with rigidity data to find particle masses
- Extends mass reconstruction into the region of E_{kin} < 500 MeV (not accessible with RICH measurements)
- Mass distribution below is example only; analysis still to be done

AMS RICH meeting, Madrid, 12 December 2006

Conclusions

New analysis tools are available, still not fully explored

- LIP charge reconstruction
- 3-parameter β reconstruction
- 5-parameter β reconstruction
- Ring-hit distances
- Impact point data
- TOF mass reconstruction
- Quality of mass separation has improved
 - Evaluation of rejection factors limited by current statistics

Future work

- Future work will include:
 - Refinements on existing cuts to further improve mass separation
 - Possible second set of cuts
 - Further work on comparisons between particle signal and tracker data
 - Corrections to velocity bias in 3-, 5-parameter reconstructions
 - Study on feasibility of 5-parameter β reconstruction without Tracker hint
 - $\star \Rightarrow$ towards a true standalone reconstruction
 - TOF mass reconstruction
 - Higher statistics in analysis to get rid of rejection factor lower limits