Particle identification with the RICH detector: further results

<u>Rui Pereira</u>, Luísa Arruda, Fernando Barão, Patrícia Gonçalves

(LIP - Lisbon)

Outline

- Mass separation
- Monte Carlo samples
- Data analysis
 - Pre-selection cuts
 - RICH selection cuts
 - Geometrical acceptance
 - Mass reconstruction
 - Mass resolution
 - Rejection factor
 - Signal/background
- Conclusions

Mass separation

- One of the main physics goals of AMS is the isotopic mass separation: ²H/¹H, ³He/⁴He, ¹⁰Be/⁹Be.
- It relies on an good β measurement (ToF, RICH) and momentum measurement (Silicon Tracker)

AMS RICH meeting, Madrid, 28 March 2006

Mass separation: standalone studies

AMS full simulation

- The purpose of this preliminary study is to evaluate the capability of mass separation with AMS
 - Full AMS simulation used
 - Preliminary analysis: ongoing study

Procedure:

- Establish a set of wide pre-selection cuts
- Study and optimize RICH specific cuts
- Evaluate mass separation capability
- D/p case used

D/p separation: Monte Carlo samples

- Two separate samples: protons and deuterons
- Particles from 3.9 m cube, top plane
 - acceptance = $\pi A = 47.78 \ m^2.sr$
- Momentum range (log spectrum):
 - protons: p = 0.5-10 GeV/c/nucleon
 - deuterons: p = 0.25-10 GeV/c/nucleon

D/p separation: Monte Carlo samples

- Simulated statistics
 - protons: 3.1 x 10⁸ events
 - deuterons: 5.6 x 10⁷ events
- Statistics crossing AMS, including LVL1 trigger:
 - protons: 8.5 x 10⁶ events (2.75%)
 - deuterons: 1.5 x 10⁶ events (2.65%)

Pre-selection cuts: overview

Event:

- One particle
- Track exists
- ACC:
 - Number of clusters
- TRD:
 - Number of tracks

ToF:

- Number of planes used
- β measurement
- Z measurement
- Number of extra clusters
- Tracker:
 - Number of planes used
 - Rigidity cross-check
 - Half-rigidity cross-check
 - Z measurement

Pre-selection cuts: bad events

Events labeled as "bad" if they have error in rigidity > 9%

AMS RICH meeting, Madrid, 28 March 2006

Pre-selection cuts: ACC clusters

- Number of clusters in ACC = 0
 - Events with clusters clearly have lower quality

Red: 0, Blue: 1, Magenta: 2, Green: 3+

Tracker rigidity error vs. ACC clusters - all events

AMS RICH meeting, Madrid, 28 March 2006

Pre-selection cuts: TRD tracks

Number of TRD tracks = 0 or 1

 Clear transition in reconstruction quality for events with more than one track

Red: 0, Blue: 1, Magenta: 2, Green: 3+

Pre-selection cuts: ToF planes

- Minimum of 3 ToF planes used for β measurement
 - Quality increases with no. planes
 - Events with 3 planes must be kept since they are a high fraction

AMS RICH meeting, Madrid, 28 March 2006

TOF beta error vs. TOF planes used - all events

1 event fraction -01 -01

10

10-4

0.4 rigidity error

beta erroi

Pre-selection cuts: ToF β measurement

- ToF β measurement should give a positive value (i. e. downgoing particle)
 - Currently redundant: other pre-cuts already exclude events with negative β

AMS RICH meeting, Madrid, 28 March 2006

Pre-selection cuts: ToF Z measurement

Z = 1 required

- Experimental conditions will require clear Z identification
- Events with Z > 1 have a high fraction of bad rigidity reconstructions (defined as having rigidity error > 9%)

protons, all energies

Pre-selection cuts: ToF extra clusters

Number of extra ToF clusters = 0 or 1

 Clear transition in reconstruction quality for events with more than one extra cluster

Red: 0, Blue: 1, Magenta: 2, Green: 3+

Pre-selection cuts: Tracker planes

- Minimum of 6 Tracker planes used for rigidity measurement
 - Quality increases with no. planes
 - Events with 6 planes must be kept since they are a high fraction

Red: 5, Blue: 6, Magenta: 7, Green: 8

AMS RICH meeting, Madrid, 28 March 2006

Pre-selection cuts: Tracker rigidity

- Compatibility in rigidity measurements: both "fast" and "geane" measurements exist and they differ by less than 3 percent
 - Cut is at over 3σ (peak standard deviation is 0.9%)

protons, all energies

Pre-selection cuts: Tracker half-rigidity

 Compatibility in half-rigidity measurements: both rigidities from 1st and 2nd half exist and differ by less than 50% of global rigidity measurement

protons, all energies

Pre-selection cuts: Tracker Z

- Z = 1 required
 - Best charge estimate, only very small fraction of events has $Z \neq 1$
 - Currently redundant after all other pre-cuts

protons, all energies

AMS RICH meeting, Madrid, 28 March 2006

Pre-selection cuts: summary

Event:

- One particle
- Track exists
- ACC:
 - Number of clusters = 0
- TRD:
 - Number of tracks < 1

ToF:

- Number of planes used ≥ 3
- β measurement > 0
- Z measurement = 1
- Number of extra clusters < 1
- Tracker:
 - Number of planes used ≥ 6
 - Rigidity cross-check diff < 3%</p>
 - Half-rigidity cross-check diff < 50%
 - Z measurement = 1

Geometrical acceptance

After pre-cuts:

RICH selection cuts: overview

- Ring exists
- Geometrical acceptance
- Number of hits
- Ring probability
- Ring signal
- RICH-ToF β consistency
- RICH β cross-check
- Z measurement

RICH selection cuts: bad events

- Events labeled as "bad" if they have error in RICH β :
 - > 3% (NaF)
 - > 1.5% (aerogel)

RICH selection cuts: geom. acceptance

- Particle impact on radiator occurs at r < 58 cm</p>
 - Point given by track extrapolation
 - Goal is to exclude events at the edge of the matrix (r_{mirror} = 60 cm)
 - Only relevant for aerogel (NaF is central square, r_{max} = 24 cm)
 - Fraction of bad events does not change significantly with radius
 - * bad event selection: RICH β error >1.5% (aerogel), >3% (NaF)

protons in aerogel, all energies

AMS RICH meeting, Madrid, 28 March 2006

RICH selection cuts: number of hits

- At least 3 hits used in RICH ring LIP reconstruction
 - RICH data with less than 3 hits in CIEMAT reconstruction were not saved in simulation files

RICH selection cuts: ring probability

- Ring probability is:
 - > 0.20 (NaF); > 0.03 (aerogel)

AMS RICH meeting, Madrid, 28 March 2006

RICH selection cuts: ring signal

- Total ring signal is:
 - < 10 p.e. (NaF); < 15 p.e. (aerogel)</p>

RICH selection cuts: ToF β check

- Compatibility in β measurements:
 - ToF-RICH difference < 10%</p>

AMS RICH meeting, Madrid, 28 March 2006

RICH selection cuts: β cross-check

- CIEMAT & LIP β measurements differ by:
 - < 0.3% (NaF), < 0.07% (aerogel)</p>
 - limits are > 3 peak σ in both cases

AMS RICH meeting, Madrid, 28 March 2006

RICH selection cuts: Z measurement

- Z = 1 or 2 accepted
 - Z = 2 tolerated due to large fluctuations in ring signal
 - Pre-cuts already selected Z = 1 in Tracker & ToF

AMS RICH meeting, Madrid, 28 March 2006

RICH selection cuts: summary

- Ring exists
- Geometrical acceptance r_{imp} < 58 cm</p>
- Number of hits ≥ 3
- Ring probability \geq 0.20 (NaF), \geq 0.03 (aerogel)
- Ring signal < 10 p.e. (NaF), < 15 p.e. (aerogel)</p>
- RICH-ToF β consistency diff. < 10%</p>
- RICH β cross-check diff. < 0.3% (NaF), 0.07% (agl)</p>
- Z measurement = 1 or 2

Geometrical acceptance

Mass reconstruction: results (aerogel)

Distributions in inverse mass

- Significant improvement after RICH cuts (red vs. yellow)
- Deuteron results show small proton peak (fragmentation?)

AMS RICH meeting, Madrid, 28 March 2006

Mass reconstruction: results (NaF)

Distributions in inverse mass

- Again, significant improvement after RICH cuts
- Quality similar to aerogel, larger statistics needed for better study

AMS RICH meeting, Madrid, 28 March 2006

Mass resolution

- Results for protons and deuterons are consistent
- Best resolution ~2% at lower energies (< 1 GeV/n for NaF, 2-3 GeV/n for aerogel)

AMS RICH meeting, Madrid, 28 March 2006

Rejection factor

- For the same *real* (not reconstructed) energy, protons are 10²-10³ times less likely than deuterons to fall on deuteron mass region (m_D±3σ)
- Values cannot be obtained for energies close to radiation threshold

AMS RICH meeting, Madrid, 28 March 2006

Signal/background

- Signal/background ratio is given by: S/B = D/p | cosmic x 1/rej
- Relative D/p abundances (from Seo et al., 1994) give sgn/bkg ~ 1-10
- Proton noise comes from events with higher energy, meaning that the exponential decay of cosmic ray spectrum will make experimental signal/background ratios higher than those shown here
- Full simulation confirms RICH simulation: <u>D/p separation is feasible</u>

Conclusions (preliminary)

- The AMS RICH provides an effective way to do mass separation at energies of a few GeV/nucleon:
 - Results from RICH standalone simulation confirmed
 - D/p separation is feasible
 - reconstruction limited by non-gaussian proton background, not by mass resolution (unlike He, Be)
 - cross-checks between detectors are useful

- Refinements in pre-cuts:
 - Tracker: rigidity χ², number of (near) extra clusters, Z measurement probability
 - ToF: Z measurement probability
 - Other...
- Refinements in selection cuts:
 - 4 hits in ring instead of 3
 - Ring acceptance
 - N_{pe} per hit
 - Exclusion of events with $Z_{RICH} = 2$
 - Z_{RICH} measurement probability
 - Other...
- Analysis of other MC samples to expand proton tail data (needed for detailed estimation of background)
- Higher statistics (especially for NaF events)
- Usage of the ToF detector to improve results at lower energies
- Study of other isotopes