Aerogel light yield studies with the test beam data from 2002 and 2003

Rui Pereira, L. Arruda, F. Barao

pereira@lip.pt

LIP, Lisbon

Outline

- Data Samples
- Data Selection
- Light Yield evaluation
 - ring acceptance
 - photoelectron spectrum
 - ring photon yield estimator
 - uncertainties
- Light Yield momentum dependence
- Refractive index evaluation
- Conclusions

Light yield : data samples

Manufacturer	n	h (mm)	2002 runs	2003 runs
MECy01.103	1.03	3×11	✓ (5,7,9,13)*	
MECy02.103	1.03	2×11	(5,7,9,11,13)	v (158)
MECy02.105	1.05	2×11	(7,9,13)	
CINy02.103	1.03	30	(5,9,13)	
CINy02.104	1.04	30	✓ (5,7,9,13)	
MECy03.103	1.03	3×11		🖌 (158)
CINy03.105	1.05	25		✓ (158)

(*) values in GeV/c/nucleon

Light yield : data selection

- ✓ Noisy events specially at low energy
- ✓ muon contamination (β =1)

Light yield : data selection criteria

✓ Signal out of the ring < 10</p>

✓ β = 1

Light yield : npe evaluation

- ✓ Mean photoelectron light yield for β =1 and full acceptance rings evaluated through a fit to the ring signal (μ_0)
- It takes into account :
 - \blacktriangleright statistical fluctuation (p_n)
 - event ring acceptance (ring width included) (p_i)
 - ▶ photomultiplier gain $g(x; n, \sigma_{p.e})$

$$f(x) = \sum_{i} p_{i} \sum_{n \ge 3} \frac{e^{-\mu_{i}} \ \mu_{i}^{n}}{n!} \ g(x; n, \sigma_{p.e})$$

with $\mu_i = \mu_0 p_i$

Light yield : ring acceptance

Ring acceptance evaluated for the event sample to take into account :

- dead photomultipliers
- prototype border effects in rings

Light yield : photoelectron spectrum

The mean photoelectron spectrum (over the cerenkov ring) at different energies.

- ✓ average gain shifted
- Iow energy spectra noisy

Light yield : pmt response

Photomultiplier response simulated

- used
 photoelectron
 spectrum
 gathered at high
 momentum (13
 GeV/c)
- *n*_{p.e} curves
 obtained from p.e
 sampling

Light yield : npe estimator

A ring signal fit is done to extract the mean number of photoelectrons

Light yield : npe uncertainties

Light yield : momentum dependence

Light yield : npe values (β =1 and full accept)

Manufacturer	n	h (mm)	2002		2003	
			LIP	CIEMAT	LIP	CIEMAT
MECy01.103	1.03	3×11	8.66 ± 0.14	$\textbf{8.23}\pm\textbf{0.16}$		
MECy02.103	1.03	2×11	$\textbf{6.84} \pm \textbf{0.10}$	5.88 ± 0.12		
MECy02.105	1.05	2×11	9.02 ± 0.16	9.29 ± 0.18		
CINy02.103	1.03	30	9.10 ± 0.18	9.78 ± 0.15	10.39±0.10	10.37 ± 0.15
CINy02.104	1.04	30	9.65 ± 0.16	10.22 ± 0.20		
	1 02	2~11			10.02 0.11	
IVIECY03.103	1.03	3×11			10.93 ± 0.11	10.95 ± 0.15
CINy03.105	1.05	25			14.70 ± 0.15	14.72 ± 0.17

Light yield : npe values (β =1 and full accept)

Light yield : refractive index

Refractive index can be derived from a fit to the data points

Light yield : refractive index

Manufacturer	n_{agl}	fi t results		
		n_{fit}	n_0	
MECy01.103	1.02981	1.0318 ± 0.0023	$\textbf{8.47}\pm\textbf{0.20}$	
MECy02.103	1.02888	1.0270 ± 0.0013	$\textbf{7.01} \pm \textbf{0.13}$	
MECy02.105	1.0477	1.0425 ± 0.0104	9.18 ± 0.35	
CINy02.103	1.02998	1.0308 ± 0.0021	9.02 ± 0.22	
CINy02.104	1.03792	1.0414 ± 0.0045	9.46 ± 0.24	

Light yield : conclusions

- Test beam data from 2002 and 2003 has been analysed
- An independent method for light yield evaluation was developed, including corrections for several error sources muon contamination, noisy events, border effects, dead photomultipliers
- Light yield follows expected momentum dependence
 - no visible effects, depending on the incident angle, up to ~ 15 degrees (LG for instance)
- The comparison with the CIEMAT results on the light yield shows :
 - 2002 : some discrepancies
 - 2003 : excellent agreement
- Independent, rough estimate of the refraction index was obtained from the light yield data
 - Estimates agree with CIEMAT results