Charge Studies with the Cern TestBeam of October-2003

L. Arruda

F. Barao, J. Borges, R. Pereira, P. Gonçalves

LIP-Lisbon

Outline

<u>Outline</u>

- Data Runs
- Data Selection
- Velocity reconstruction
- Charge reconstruction
- ▷ Aerogel Tile homogeneity
- Conclusions

Radiators tested

Manufacturer	index	size ($\ell imes \ell imes h \ mm^3$)	Short	Comments
Novossib.	1.03	$100 \times 100 \times 31$	N.103G	tests : 2003
Novossib.	1.04	$57 \times 57 \times 26$	N.104	tests : 2003
Novossib.	1.05	$55 \times 55 \times 25$	N.105	tests : 2003
Novossib.	1.03	$50 \times 50 \times 25$	N.103	tests : 2002, 2003
Matsushita	1.03	$115 \times 115 \times 11$ (3 tiles)	MNN.103	tests : 2003
Matsushita	1.036	$42 \times 56 \times 11$ (3 tiles)	MNN.1036	tests : 2003
Matsushita	1.03	$113 \times 113 \times 11$ (2 tiles)	MN.103	tests : 2002, 2003
Matsushita	1.05	$100 \times 100 \times 11$ (2 tiles)	MN.105	tests : 2002, 2003

Data analysed

Run	A/Z	Radiator	Drift (cm)	Comments
612	2.25	N.103?	33.4	
538-546	2	N.103G	42.3	Tile scan
525-533	2	MNN.103	42.3	Tile scan

Runs 612, 538-546 : madrid production

Runs 525-533 : lip production

Data Selection

- Photon vertex reconstructed from cerenkov ring information on an event to event basis compatibility between *running vertex* and LG max hit
- Cerenkov ring *flatness* hits azimuthal uniformity demanded
- Event signal (excepting particle)/ Cerenkov Ring signal < 1 reject 2nd interactions
- $\triangleright \ |\beta-1| < 3 \times 10^{-3}$

particle velocity compatible with 1

Charge Reconstruction

- Cerenkov Ring acceptance
 full ring events demanded
- Signal integration
 hits within 1.3cm of the
 reconstructed ring

Particle Impact Point

The particle impact point is obtained from the cerenkov ring pattern

Ring flatness

Particles inciding with $\theta = 0$ shall have cerenkov photons uniformly distributed

$$Flatness = \frac{\sum w_i cos\phi_i}{\sum w_i} \qquad w_i = signal$$

$$Flatness < \begin{cases} 0.7, & nhits < 20\\ 0.4, & 20 < nhits < 120\\ 0.2, & nhits > 200 \end{cases}$$

Ring flatness distributions

Ring flatness distributions

rejected event : Flatness = 0.7

Event signal

Noisy events were rejected by demanding a small noisy-ring signal ratio

Event display with signal ratio ~ 1.6

Velocity reconstruction (run 538)

Charge reconstruction

Madrid, Feb-04

Charge reconstruction

Charge error and deviation : N.103G/Run538

Charge error and deviation : MNN.103/Run526

PMT saturation

Zrec-Zexp

- Introduction of the PMT saturation law previously used on 2002 run obviously misadapted!
- The PMT saturation law can be derived from data

Integrated signal saturation

Charge confusion

- nominal beam charges selected with scintillators
 high purity demanded
- rich charge confusion evaluated

run	helium confusion	
538	0.9%	
612	1.3%	

Tile scan : Cerenkov angle

Tile scan : helium charge evaluation

Madrid, Feb-04

Conclusions

- Charge reconstruction performed for different runs
- ▷ Charge saturation observed for Z>10
- ▷ Tile uniformity studied with Cerenkov angle and light yield
 - \triangleright θ_c reconstructed indicates refractive index stability
 - light yield variation can be due to radiator thickness or transmitance variations???
- ⊳ to be continued...