RICH standalone reconstruction

An algorithm for finding the particle direction and velocity from a set of 2-dim points

Fernando Barão, Rui Pereira

LIP (Laboratório de Instrumentação e Física Experimental de Partículas)
Av. Elias Garcia, 14, 1°, P-1000-149 Lisboa

AMS EXPERIMENT

AMS (Alpha Magnetic Spectrometer)
is an international experiment to be is an inernational experiment to be
installed in the International Space Station in 2006. It is scheduled to operate for a minimum of 3 years,
collecting an unprecedented amount of data on charged Cosmic Rays, owing for:
A major improvement on the curren A seargh of cosmic ray spectra; A search for new particles (including

AMS experiment

RICH DETECTOR

Included in AMS is a RICH (Ring Imaging material (aerogel) on the top, a matrix of 680 multianode photomultipliers at the bottom and a large conical mirror around for increasing the detector's geometrical acceptance.

AMS RICH detector

CHERENKOV EFFECT
When a charged particle (red line) crosses a medium with a velocity greater than the velocity of light in that medium (given by c / n, where n is the medium's refraction index), it radiates in the V//visible part of the spectrum. This is known as Cherenkov effect. Cherenkov photons (blue
lines) are emitted at a fixed angle θ in respect to the particle's path VM. This angle is a function ines) are emitted at a fixed angle θ_{c} in respect to the particle's path VM. This angle is a function

PATTERN RECONSTRUCTION

A Monte Carlo algorithm was developed using CERN's ROOT package to simulate the emission of Cherenkov radiation in aerogel by charged cosmic ray particles, and econstruct the particle's direction (polar and az RICH all number of photons collected in the Rnly direct photon paths were considered in this simulation. Photon reflection due to the conical mirror was not taken into account.
Each particle crosses only a small length of aerogel, meaning that the reconstruction problem may be simplified by considering all photons generated by a given particle as emitted at the same point V . Under this assumption, potential photon paths define conical surface with V as its vertex. This surface is then distorted as photons chang ,
reconstruction for all parameters. This reconstruction is not uns are needed to obtain a
NEWTON-RAPHSON METHOD
Newton-Raphson method was used to find possible reconstructions for 3-photon sets. his was achieved by creating a set of three functions f_{k} which relate the three unknowns θ, ϕ, θ_{c} :

$$
f_{k}\left(\theta, \phi, \theta_{c} ; P_{k}, M\right)=\cos \theta \cos \theta_{i}+\sin \theta \sin \theta_{i} \cos \left(\phi-\varphi_{r}\right)-\cos \theta
$$

φ_{r} is the photon's azimuthal angle (which remains unchanged after refraction), given by

$$
\tan \varphi_{r}\left(\theta, \phi ; P_{k}, M\right)=\frac{\left(y_{P_{k}}-y_{M}\right)+(h+H) \tan \theta \sin \phi}{\left(x_{P_{k}}-x_{M}\right)+(h+H) \tan \theta \cos \phi}
$$

θ_{i} is the photon's polar angle before refraction, a function of the angle α, calculated by numerical inversion of

$$
\tan \alpha=\frac{h \tan \theta_{i}+H \tan \theta_{r}}{h+H} \quad \text { where } \quad \sin \theta_{r}=n \sin \theta_{i}
$$

The angle α is given by the form
$\tan \alpha=$

$$
=\frac{\sqrt{\left.\left(x_{P_{t}}-x_{M}\right)+(h+H) \tan \theta \cos \phi\right]^{2}+\left[\left(y_{P_{t}}-y_{M}\right)+(h+H) \tan \theta \sin \phi\right]^{2}}}{h+H}
$$

Starting values are given for θ, ϕ, θ. Newton-Raphson method is applied for solving the following system of linear equations:
$\sum_{j=1}^{3} \frac{\partial f_{k}}{\partial w_{j}} \delta w_{j}=-f_{k} \quad(\mathrm{k}=1,2,3) \quad$ where $\quad w_{1} \equiv \theta \quad w_{2} \equiv \phi \quad w_{3} \equiv \theta_{c}$
Derivatives for f_{k} are numerically calculated. The next step values are given by

$$
w_{k}^{(n+1)}=w_{k}^{(n)}+\delta w_{k}
$$

This procedure is repeated until δw_{k} are negligible, meaning a solution was found. More than one reconstruction may be obtained from the same 3 -photon set. Most bad atterns may be excluded based on physical reasonings.
Taking a sample of events with 4 or more photons deted Newton Raphon's method was applied to all sets of 3 photons. Assuming no errors on photon positions, there is reconstruction (the correct one) that is found for all 3-photon sets. Experimental error imply that good reconstructions are not entirely coincidental, meaning that an average must be taken over the results obtained. Sets containing photons that are very close to each other are excluded due to their high sensitiveness to error. A clustering algorithm may be used as a final test to exclude reconstructions too far from average to be the remaining patterns, giving the final result.

RECONSTRUCTION EXAMPLE

Three different reconstructions (red
lines) for the same theoretical ines) for the same theoretical Cherenkov pattern (black line) as a
result of different choices of 3 out of 7 photon impact points (filled dots): (a) a good reconstruction; (b) exclududed for
containing two close photos; (c) containing two close photons; (c)
excluded based on θ cut. The cross near the centre marks the charged particle's impact point.

RECONSTRUCTION RESULTS

Reconstruction spectra for θ (right), ϕ (bottom) and θ_{c} (bottom right) for simulated particles with $\theta=20^{\circ}, \phi=0^{\circ}, \theta_{c}$
$=10^{\circ}$ obtained from 3 -photon sets as a function of the smallest photon distance

