
ULYSSES

Particle tracking in complex geometries

Version 3

Luis Peralta

Lisbon, April 2012

1

Index

Introduction ... 3

The main program ... 5

Geometry .. 6

Radiation source .. 8

Volume codes ... 9

Volume definition .. 9

Volume rotations ... 11

Tracking inside the volumes ... 13

Volume definition and hit points .. 15

Particle line of flight ... 15

Box .. 15

Cylinder ... 16

Tube .. 17

Elliptic Cylinder .. 18

Sphere .. 19

Cut-Sphere .. 20

Cone ... 20

Pyramid ... 21

Wedge ... 24

Paraboloid ... 26

Ellipsoid ... 28

User routines .. 30

Useful routines ... 31

2

Introduction

Ulysses (or Odysseus) is the the legendary Greek king of Ithaca, hero of the Odyssey and

the mythological founder of Lisbon. During the Roman Empire the city was called Olisippo

or Ulyssippo. The ULYSSES package for tracking and histogramming has been developed

in the University of Lisbon since 2007 by Luis Peralta with contributions of Ana Catarina

Farinha and Tiago Ribeiro.

The ULYSSES package is a package, designed to make particle tracking in complex

volumes and score the results. The histogramming routines are grouped in a library called

ULHISTOS and a dedicated manual is available. The geometry package is divided in the

ullib.f library containing the routines not meant to be modified by the user and the main,

ulgeo and ulsource user routines. An include file ullib.inc contains all the ULYSSES

common variables. In a normal application the user should not have to access the

variables in these commons, but if need the variables therein can be customized for the

envisage application. In ULYSSES the set of available volumes can be associated to build

complex bodies.

Simulation of radiation transport in material systems involve two different kind of tasks: one

concerns the physical processes and the other the particle tracking through the geometry.

The second task concerning space displacements, interface crossings, etc, is the purpose

for which ULYSSES has been created. From the optimization point of view this is a

important part of the program since for complex geometries, the particle tracking can take

a large fraction of the simulation time.

The ULYSSES package is written in FORTRAN and some knowledge of the language is

necessary for an efficient usage of the program. Please refer to the README file in the

ULYSSES library folder for details on the program compilation. In ULYSSES the geometry

declaration is made through the ulgeom routine and the radiation source is defined in

routine ulsource. The package come with several geometry and radiation source

examples, which can be adapted according to the user needs.

The general package flowchart is presented in the figure 1.

3

Figure 1. Package flowchart.

4

The main program

ULYSSES is controlled by a main program (main.f)

where the call to the interaction with matter routines

are made. A call to the routine ulinit is mandatory at

the beginning of the main program and resets all

common variables. The optional routine ulspcini may

be necessary to initialize a spectrum generator.

The histogram book will be made in the beginning of

the main program, along with the input of all

necessary parameters and variables.

A call to ulgeo will then be made to define the setup

geometry and a call to ulgsummary gives a

summary of the input geometry, helping on the

geometry debugging. Some tool programs are

available for the geometry debugging.

The loop on the primary (and secondary) particles is

made following this introductory in this part along with

the scoring of the results. Inside this loop the routine

ulsource is used to generate the primary particle

characteristics. The routine ultrack finds the next

particle position according to a given step. In case of

volume boundary crossing the particle is placed very

near the boundary but already in the new volume.

Figure 2: Flowchart of main

program.

The common variables of the ULYSSES routines are place in common declarations which

are get together in the include file ulincl.inc The user usually does not need to access this

file. ULYSSES will not need the inclusion of any common variables in the main program,

5

Init ULYSSES
(ulinit)

Init histograms
(ulhstart)

Book histograms

Init run
variables

Define geometry
(ulgeo)

Init physical
routines

Start event
(ulsource)

Find new volume
(ulfind)

Compute next
step length

Track particle
(ultrack)

Make an
 interaction

Score step
results

Score event
 results

Output results

and the communication with the routines is made by the input/output variables in the called

routines. A set of special routines is provided to retrieve some parameters from the

program database.

The diagram in the figure 2 resumes the working mechanism inside the main program.

Geometry

There are several volumes available in ULYSSES that can be used to build complex

bodies. Each volume type has a code number (see table 1). There exists volume sub-

types when the volume has some symmetry axis. In these cases there exists type codes

for the three main directions (ie x,y,z). These types allow for a CPU time sparring because

they use a simpler rotation routine.

Figure 3: Universe-mother-daughter relationship.

The geometry system used by ULYSSES allows for the construction of rather complex

structures by adding (or subtracting) volumes. The volume organization is made using a

mother-daughter logic (figure 3). Any volume may have daughter volumes inside. All the

volumes have a mother volume except the universe volume which contain all volumes. A

volume may have more than one mother (shared volume) and that declaration is made in

ulgeom. The shape of the universe volume is a box and must be big enough to contain all

the other volumes. Each volume is identified by its id number (1 to 9999). The universe

volume has always id=1. Other volumes may have any id in the valid range. There isn't

any kind of restriction on the order given to the id numbers which is free. By definition the

universe medium is vacuum (mat=0) and a particle falling into the universe volume (i.e.

getting out of any other volume) will be discarded (i.e tracking is stopped). As a

6

1

2

3

4

5

6

Universe 1

2

3 5

4 6

consequence, the radiation source can not be directly place inside the universe volume,

but instead must be placed within an appropriate material volume.

Each volume has a reference frame attach to it. The main reference frame is the universe

reference frame and all operations (rotations and positioning) are referred to it. Other

reference frames are defined relative to the universe frame. A volume can be rotated along

one of the main (x,y or z) axis, giving the rotation angle. Volumes are created by routine

ulvolume and then set into position using routine ulposi (figure 4). Apart from its id a

volume type must be chosen for each volume (see table 1 and 2) and a material (code)

assigned. If the volume is rotated relative to one of the main axis the rotation angle must

be supplied. This operation is made via a call to ulrotate. The volume's mother id is

declared via ulvolume. To define a second mother (shared volume) a second call to

ulvolume should be made. All other parameters in ulvolume remain constant (in fact a

check is made by the program).

Figure 4: ulgeom flowchart.

7

ulgeom

Define Universe
(ulvolume)

Define volume
(ulvolume)

Set volume
position
(ulposi)

Rotation ? Rotate volume
(ulrotate)

Return

Radiation source

A source of of radiation has to be defined within the program using the routine ulsource.

The source emits the primary particle that is going to be followed. The user must specify

the particle starting position, direction, kinetic energy and type (a code defined by the

user). Many source configurations may be considered, but all the coding is left to the user.

In the examples some different sources are given. The source can be extended in space

and particles can be emitted in any direction. If the beam is not monochromatic then the

user may use routine ulspc to generate the energy from a given list of values. This

routine can also be used in other cases for instance when the source has different

locations (ex. several radioactive sources). If an energy spectrum is available in an

histogram produced by ULHISTOS then routine ulhrnd1 can be used to generate the

particle energy.

The routine ulrndls can also be used to choose a value among a small list of values. This

routine is devised to be used when probability values change, for instance as a function of

energy (like the probabilities of the different interaction processes).

8

Volume codes

Each volume has a 3 number type code. The first number is the kind of geometrical figure,

the second the sub-type and the third the symmetry axis. In the table below the volume

codes are presented.

Table 1: Volume type codes.

Volume Type Alignment/

symmetry axis

Box 100

Cylinder 200/203 (201) (202) z (x) (y)

Tube 210/213 (211) (212) z (x) (y)

Elliptic cylinder 220/223 (221) (222) z (x) (y)

Sphere 300

Cut sphere 310/313 (311) (312) z (x) (y)

Cone 400/403 (401) (402) z (x) (y)

Pyramid 500/503 (501) (502) z (x) (y)

Wedge 600/603 (601) (602) z (x) (y)

Paraboloid 700/703 (701) (702) z (x) (y)

Ellipsoid 800 z

Volume definition

Each volume is defined by a set of parameters and conditions. All conditions are relative to

the volume reference frame. Taking the z axis as the symmetry axis, those parameters and

conditions are displayed in the table below. For further explanations on the volume

parameters and constrain conditions see the section "Tracking inside the volumes".

9

Table 2: Volume definition parameters.

Volume type Parameters Conditions

Box 100 1- x side = Lx
2- y side = Ly
3- z side = Lz

−Lx/2≤x≤Lx/2
−Ly/2≤y≤Ly/2
−Lz /2≤z≤Lz/2

Cylinder 200 1- radius = r
2- height = h

x2
y2

≤r2

−h/2≤z≤h/2

Tube 210 1-min radius = r min
2-max radius = r max
3- height = h

rmin
2
≤x2

y2
≤rmax

2

−h/2≤z≤h/2

Elliptic cylinder 220 1- x axis radius = a
2- y axis radius = b
3- height = h

x2
/a2

y2
/b2

≤1
−h/2≤z≤h/2

Sphere 300 1- radius = r x2
y2

z2
≤r 2

Cut sphere 310 1- radius = r
2- min height = hmin
3- max height = hmax

x2
y2

z2
≤r 2

hmin≤z≤hmax

Cone 400 1- radius at base = rmax
2- height of cut part= h2
3- cone total height = h

tg =rmax/h
h−h2≤z≤h

x2
y2

≤z2 tg2


Pyramid 500 1- x side = Lx
2- y side = Ly
3- partial height = hmin
4- total height = h

0≤z≤hmin

xmax=h−z Lx /2h
ymax=h−z Ly /2h
−xmax≤x≤xmax

−ymax≤y≤ymax

Wedge 600 1- x side = Lx
2- y side = Ly
3- min height = hmin
4- max height = hmax

cx=Lx hmax /hmax−hmin

zmax=cx−x hmax /cx

0≤x≤Lx

−Ly/2≤y≤Ly /2
0≤z≤zmax

Paraboloid 700 1- x axis radius = a
2- y axis radius = b
3- height = h

0≤z≤h
x2
/a2

y2
/b2

−z≤0

Ellipsoid 800 1- x axis radius = a
2- y axis radius = b
3- z axis radius = c

x2

a2
y2

b2
z2

c2−1≤0

10

Volume rotations

The volume definition conditions uses the volume local reference frame. If the figure has

some sort of symmetry it is assumed the z-axis as the symmetry axis. Figures aligned

along the universe x or y-axis must be rotated.

Let S and S' be two reference frames rotated by  around an axis.

Figure 5: Reference frame rotation.

In the plane a point P with coordinates (u,v) in S will have coordinates (u',v') in S' given by

u'=ucosvsin 
v '=−usinv cos

or in matrix format

u'
v '= cos sin

−sin cosuv 

ULYSSES takes the z-axis as the the main symmetry axis. If the volume is aligned along

the x or y-axis a rotation of =−/2 will be performed on the x-z or y-z plane to change

from the universe frame to the volume frame where the volume is aligned along the z-axis.

Figure 6 : Rotation to volume reference frame where z'-axis is the symmetry axis.

11

 S

S'



S (universe)

S'
(volume)

x

z

x'

z'

For this rotation we have

x '
z '= 0 −1

1 0 xz  .

and the inverse matrix is equal to the transpose

xz = 0 1
−1 0 x '

z '

For a volume align with the y-axis a similar transformation is made, where we simply

change x and x' by y and y', respectively. These rotations are performed by the program

depending on the volume irot value given on calling ulrotate.

Rotation about an axis

The volumes can be rotated around one of the main x,y or z-axis. A flag irot can be set

with the following values on calling routine ulrotate in ulgeom.

irot=0 : no rotation

irot=1 : rotation around xx

irot=2 : rotation around yy

irot=3 : rotation around zz

The rotation angle  is measured relative to one of the universe reference frame axis so

that it can always be taken as a rotation on a plane. This is a constrain on the possible

rotations, but it is fitted for most practical cases.

irot =1: Volume rotated around the x-axis by  with respect to the y-axis


x '
y '
z '=

1 0 0
0 cos sin
0 −sin cos

x
y
z

12



S (universe)

S'
(volume) y

z

y'
z' 

irot =2: Volume rotated around the y-axis by  with respect to the x-axis


x '
y '
z '=

cos 0 sin
0 1 0

−sin  0 cos
x
y
z

irot =3: Volume rotated around the z-axis by  with respect to the x-axis


x '
y '
z '=

cos sin 0
−sin  cos 0

0 0 1
x
y
z

Tracking inside the volumes

The tracking routine ultrack transports

the particle through the geometry

watching out for boundary crossing.

This routine is called in the main

program. The position x0 , direction

u , step and current volume id are

given as input. At exit, the routine

outputs the new volume id and material

index (mat).

Figure 7: ULTRACK flowchart

13



S (universe)

S'
(volume) x

z

x'
z' 



S (universe)

S'
(volume) x

y

x'
y' 

ultrack

(uldhit)
(get)

dmin > step x= x0step×u

(ulfind)

x= xhitdelta×u

xhit , dmin

Yes

Return

Routine ultrack calls on uldhit routine to compute the nearest hit point with a boundary

and the corresponding distance dmin. If the distance dmin is greater than step then a

boundary will not be crossed in this call and the particle is transported to a new position

x according to the equation x= x0step×u .

On the other hand, if a boundary is going to be crossed, the particle is placed across the

boundary at the point x= xhitdelta×u where xhit is the boundary hit point and delta a

very small quantity (1.0×10−10 cm).

Routine uldhit uses the routine uldvol to compute the hit points and distances to the

volume boundaries as well as to the child volumes inside that volume.

Figure 8: uldhit flowchart.

14

uldhit

Compute hit points and
distance to bondary of

 current volume
(uldvol)

Compute hit points and
distances to child volumes

(uldvol)

Choose dmin and hit point

Return

Volume definition and hit points

Particle line of flight

Between two interactions the particle line of flight is assumed to be a straight line. Given a

starting point x0 and a direction vector u the vectorial equation of the particle path is

define as x= x0u or in components

x=x0ux

y=y0uy

z=z0uz

where  is a real parameter.

Box

A box with sides of length Lx, Ly, Lz is define by a set of 6 planes given by the equations

x=
−Lx

2
, x=

Lx

2
, y=

−Ly

2
, y=

Ly

2
, z=

−Lz

2
, z=

Lz

2
.

A point is inside the box if

−Lx/2≤x≤Lx/2
−Ly/2≤y≤Ly/2
−Lz /2≤z≤Lz/2

Hit points

Planes x=
−Lx

2
,x=

Lx

2
, if ux≠0

1=
−Lx /2−x0

ux

and 2=
Lx/2−x0

ux

15

z

y

Ly

Lz

Planes y=
−Ly

2
, y=

Ly

2
, if uy≠0

3=
−Ly /2−y0

uy

and 4=
Ly/2−y0

uy

Planes z=
−Lz

2
, z=

Lz

2
, if uz≠0

5=
−Lz /2−z0

uz

and 6=
Lz /2−z0

uz

Cylinder

We define the cylinder side by the equation x2
y2

−r 2
=0 and the bottom and top by

z=−h/2 and z=h/2

A point is inside the cylinder if

−h/2≤z≤h/2
x2
y2

−r 2
≤0

Hit points

The particle path is defined by a local straight line with vectorial equation

x= x0u or

x=x0ux

y=y0uy

z=z0uz

16

h

z

y

y

x
r

Top side

z=h/2 and =h/2−z0/uz

Bottom side

z=−h/2 and =−h /2−z0/uz

Sides

x0ux
2
y0uy

2
−r 2

=0 or


2 ux

2
uy

2  2x0ux2y0uy x0
2
y0

2
−r 2

=0

Making

A=ux
2
uy

2
B=2x0ux2y0uy 
C=x0

2
y0

2
−r 2

we get the values  solving the 2nd degree equation

=
−B±B2−4AC

2A

Tube

A tube is made of two concentric cylinders. For a tube with length h, internal radius rmin

and external radius rmax an internal point obeys the conditions

17

h

z

y
rmax

rmin

y

x

−h/2≤z≤h/2
x2
y2

−rmin
2
≥0

x2
y2

−rmax
2

≤0

The equations for the determination of the hit points are the same as for the cylinder.

Elliptic Cylinder

We define the elliptic cylinder side by the equation

x2

a2
y2

b2=1

and the bottom and top by z=−h/2 and z=h/2

A point is inside the cylinder if

−h/2≤z≤h/2
x2

a2


y2

b2
−1≤0

Hit points

Top and bottom the same as the cylinder.

Sides

x0ux
2

a2

y0uy

2

b2
−1=0

2 ux
2

a2
uy

2

b2  2x0ux

a2 
2y0uy

b2  x0
2

a2
y0

2

b2−1=0

18

h

z

y

y

x
a

b

and defining

A=ux
2

a2
uy

2

b2 
B=2x0ux

a2 
2y0uy

b2 
C=

x0
2

a2 
y0

2

b2 −1

we get the values  solving the 2nd degree equation.

Sphere

The sphere is defined by the equation

x2
y2

z2
−r 2

=0

and a point is inside the sphere if x2
y2

z2
−r 2

≤0

Hit points

The intersection between the line of flight and the sphere is given by

x0ux
2
y0uy

2
z0uz

2
−r2

=0

which a 2nd degree equation with the parameters

A=ux
2
uy

2
uz

2=1

B=2x0ux2y0uy2z0uz 
C=x0

2
y0

2
z0

2
−r 2

and the values of  are obtained by solving the 2nd degree equation.

19

r

y

x

Cut-Sphere

The cut-sphere side is defined by the equation x2
y2

z2
−r 2

=0

and the bottom and top parts by z=hmin and z=hmax .

A point is inside the cut-sphere if x2
y2

z2
−r 2

≤0 , z≥hmin and z≤hmax .

The intersection between the line of flight and the cut-sphere side is given by

x0ux
2
y0uy

2
z0uz

2
−r2

=0

and the solution is obtain in the same way as the sphere.

For the bottom and top sides, i.e. planes z=hmin and z=hmax , if uz≠0 the  is

given by =
hmin−z0

uz

or =
hmax−z0

uz

.

Cone

The revolution cone surface is define by the equation (vertex at (0,0,0))

20

z

y

y

x
r

r

hmin

hmax

y

x
r

h2

h

z

y

Rmax

Rmin

r 2

z2
=tg 2 where  is the cone opening angle. This equation can be written as

x2 y2=z 2tg 2 .

Using the rmax and h values we can compute tg  as tg 2=
rmax
2

h2
.

The hit points between particle line x= x0u and the revolution cone are given by

x0ux 
2
 y0u y

2
= z0u z

2tg 2

So one gets a 2nd degree equation a2bc=0 with

a=ux
2
uy

2
−uz

2 tg 2

b=2 x0ux y0u y−z0uz tg
2


c= x0
2
 y0

2
− z0

2 tg2 

and the values of  are obtained by solving the 2nd degree equation.

Pyramid

Let's consider a pyramid with sides at base Lx and Ly and height hmax, and the origin of the

coordinate system (0,0,0) at the geometrical center of the rectangular base. The angle

between the pyramid and the z axis is x in the x direction and y in the y direction.

The following relations hold between the variables

21

θx

Lx

hmax

hmin
x

z

L'x

Lx

hmax

=
L 'x
hmin

, tg x=
Lx

2hmax

cosx=
hmax

hmax
2

Lx /2
2 , sin x=

Lx

2hmax
2

Lx/2
2

and similar relation can be written for y.

For the cut pyramid a point (x,y,z) is inside if

0≤z≤hmin and

−L 'x/2≤x≤L 'x /2
−L 'y/2≤x≤L 'y /2

where

L 'x=Lx

hmin

hmax

, L 'y=Ly

hmin

hmax

Side plane equation

Let n be normal vector to the slanted right side. Then its components are

nx=cosx

ny=0
nz=sinx

22

θx

Lx

x

z

θx
n

and the components of the normal vector at the left side

nx=−cosx

ny=0
nz=sinx

.

Each of the four pyramid sides belong to a plane defined by the equation

n⋅r−r0=0

where r=rx ,r y , rz is the position vector of any point on that plane.

The common point to the four sides is the pyramid vertex r0=rx0 , r y0, rz0=0,0,hmax .

The plane equation is thus

nx r x−r x0nyr y−r y0nzr z−r z0=0

Hit points

The particle path is defined by a local straight line with vectorial equation r=x= x0u .

Plugging in the plane equation and solving for 

nx x0ux−r x0nyy0uy−ry0nz z0uz−rz0=0

=−
nxx0−r x0ny y0−ry0nz z0−r z0

nx uxny uynz uz

.

Finally substituting rx0 , r y0 , rz0=0,0,hmax

23

=−
nx x0ny y0nzz0−hmax

nx uxny uynzuz

.

We note that n⋅u=nx uxny uynz uz must be non-zero, i.e. the particle must not travel

parallel to the plane, in which case there is no intersection.

For the bottom and top sides, i.e. planes z=0 and z=hmin , if uz≠0 the  is

given by =
−z0

uz

or =
hmin−z0

uz

.

Wedge

side view bottom view

Let's consider a wedge with sides at base Lx and Ly and heights hmax and hmin and the

origin of the coordinate system (0,0,0) as indicated in the figure. The angle between the

slanted side and the z axis is 

The length Cx is given by

24

Lx

hmax
hmin

x

z

Cx

θ θ
n

x

y

Lx

Ly

hmax

x

zmax

Cx-x

θ

C x

hmax

=
C x−Lx

hmin

⇒ Cx=Lx

hmax

hmax−hmin

and hmax≠hmin .

For 0≤x≤Lx the following relations hold between the variables

zmax

C x−x
=

hmax

Cx

⇒ zmax=Cx−x
hmax

Cx

 and

cos=
hmax

hmax
2

Cx
2 , sin =

Cx

hmax
2

Cx
2 .

For the wedge a point (x,y,z) is inside if

0≤x≤Lx

−Ly/2≤y≤Ly /2
0≤z≤zmax

and

Slanted side plane equation

Let n be normal vector to the slanted side. Then its components are

nx=cos
ny=0
nz=sin

Each of the four pyramid sides belong to a plane defined by the equation

n⋅r−r0=0

where r=rx ,r y , rz is the position vector of any point on that plane.

A point on that plane is r0=rx0 , r y0, rz0=0,0,hmax .

The plane equation is thus

25

nx r x−r x0nyr y−r y0nzr z−r z0=0

Hit points

The particle path is defined by a local straight line with vectorial equation r=x= x0u .

Plugging in the plane equation and solving for 

nx x0ux−r x0nyy0uy−ry0nz z0uz−rz0=0

=−
nxx0−r x0ny y0−ry0nz z0−r z0

nx uxny uynz uz

.

Finally substituting rx0 , r y0 , rz0=0,0,hmax

=−
nx x0ny y0nzz0−hmax

nx uxny uynzuz

.

We note that n⋅u=nx uxny uynz uz must be non-zero, i.e. the particle must not travel

parallel to the plane, in which case there is no intersection.

For the bottom we have z=0 and for the sides x=0, x=Lx , y=
−Ly

2
, y=

Ly
2

.

Paraboloid

26

zmax

x

z

We define the paraboloid by the equation

x2

a2
y2

b2−z=0

At z=zmax and y=0 we get x=azmax . Likewise at z=zmax and x=0 we get y=b zmax .

A point is inside the paraboloid if

0≤z≤zmax

x2

a2 
y2

b2 −z≤0

Hit points

The particle path is defined by a local straight line with vectorial equation x= x0u .

Top side z=zmax and =zmax−z0/uz

Sides

x0ux
2

a2

y0uy

2

b2
−z0uz=0 or


2 ux

2

a2
uy

2

b2  2x0ux

a2 
2y0uy

b2 −uzx0
2

a2
y0

2

b2−z0=0

Making

A=ux
2

a2
uy

2

b2 
B=2x0ux

a2 
2y0uy

b2 −uz
C=

x0
2

a2 
y0

2

b2 −z0

we get the values  solving the 2nd degree equation.

27

Ellipsoid

We define the ellipsoid by the equation

x2

a2
y2

b2
z2

c2=1

where a,b,c are the axis lengths. A point is inside the ellipsoid if

x2

a2
y2

b2
z2

c2−1≤0 .

Hit points

The particle path is defined by a local straight line with vectorial equation x= x0u

Sides

x0ux
2

a2

y0uy

2

b2

z0uz

2

c2
−1=0 or

2 ux
2

a2
uy

2

b2
uz

2

c2  2x0ux

a2 
2y0uy

b2 
2z0uz

c2 x0
2

a2
y0

2

b2
z0

2

c2−1=0

28

x

z

Making

A=ux
2

a2
uy

2

b2 
uz

2

c2 
B=2x0ux

a2 
2y0uy

b2 
2z0uz

c2 
C=

x0
2

a2 
y0

2

b2 
z0

2

c2 −1

we get the values  solving the 2nd degree equation.

29

User routines

**

ulgeo ()

**

purpose: define the geometry

**

Each volume has an ID number between 1 and 9999. The universe ID is 1 (mandatory).

The volumes ID can be any integer number greater than 1, and they don't have any

particular order.

**

ulsource (e,x,y,z,u,v,w,kpar)

**

purpose: define a source

output:

e – material id : real*8

x,y,z – starting position : real*8

u,v,w - direction cosines :real*8

kpar – particle type : integral*4

**

In this routine the source position and primary particle characteristics are defined. The

user must give the starting position (x, y, z) – in cm, direction cosines (u, v, w), particle type

(a user defined code) and energy of the primary particle.

30

Useful routines

**

ulinit()

**

Database initialization. This routine must be the first to be called.

**

ulvolume(id,par,itype,imother,mat)

**

purpose: id confimation

id – identifivation number : integral*4

par– volume's parametres : real*8

itype – volume's type : integral*4

imother – volume's mother id : integral*4

mat – material id : integral*4

**

The volume organization is made by the number given to each volume in the routine

ulgeo. This subroutine verifies bad volume identifications and their connection with each

other, for example, in the case we have one volume inside another.

**

ulposi(ivolu,xcenter)

**

purpose: id confimation

ivolu – volume's id : integral*4

xcenter(3) - volume's position : real*8

**

This routine enters the position of volume id=ivolu to the volumes data base.

31

**

ulrotate(id,irot,angle)

**

purpose: id confimation

id – volume's id : integral*4

irot - rotation type : integral*4

angle - rotation angle (deg) : real*8

**

This routine defines a rotation about one of the x,y or z-axis by an angle.

irot=0 : no rotation

irot=1 : rotation around xx

irot=2 : rotation around yy

irot=3 : rotation around zz

**

ultrack(x,y,z,u,v,w,ibody,stepin,newbody,mat)

**

purpose: track a particle

x,y,z – starting position : real*8

u,v,w – direction cosines : real*8

ibody – old volume's id : integral*4

stepin – step : real*8

newbody – new volume's id : integral*4

mat – material id : integral*4

**

This routine allows the user to track a particle in a complex geometry.

32

**

ulfind(x,y,z,ibody,mat)

**

purpose: finds volume where particle stands

x,y,z – starting position : real*8

ibody – new volume's id : integral*4

mat – material id : integral*4

**

This routine allows to find the volume to which point (x,y,z) belongs. In the case of volume

overlap the routine follows the mother-daughter logic and at the exit ibody is always the

daughter volume id.

**

ulhit(x,y,z,u,v,w,id,iflag)

**

purpose: see if volume is hit by particle

x,y,z – particle position : real*8

u,v,w – particle direction : real*8

id – volume id : integral*4

iflag – hit flag : integral*4

**

See if particle line of flight intersects volume id. The routine is design to check is a particle

keeping the present flight direction will hit a given volume.

**

ulgsummary

**

This routine prints on screen the volume's essential information – number of defined

volumes, volume parameters for each volume (volume id, dimensions, center position),

number of children, children identification number.

33

**

ulgetpar(id,par)

**

purpose: uploads the parameter to par

id – volume's id : integral*4

par(4)– volume's parameters array : real*8

**

This routine gets the volume parameter for a chosen volume.

**

ulput1par(id,ipar,value)

**

purpose: change a volume parameter

id – volume's id : integral*4

ipar– volume parameter : integer*4

value - parameter value : real*8

**

This routines allows the change of a single volume parameter.

On runtime the routine is useful if a variable geometry is to be simulated.

**

ulrndls(P,n,iout)

**

purpose: randomly choses a number from a given list

P- probability array : real*8

n- number of cases in array : integer*4

iout- index of chosen value in array : integer*4

**

The routine randomly chooses a case from a small list according to given probabilities P.

The output is the position of the chosen case in the array iout.

34

The routine is useful when a case must be chosen from case list with different

probabilities, that can modified each time the routine is called.

The probabilities in array P don't need to be properly normalized to one, since that step is

taken each time the routine is called.

**

ulspcini(id,Ein,Pin,n)

**

purpose: initialize ulspc random number generator

**

id- generator id number : real*8

Ein- values array : real*8

Pin- values probability array : real*8

n- array dimension : integer*4

This routine must be called prior to ulspc. To each generator an id number (between 1

and 10) is assigned. The maximum number of generators (10 by default) can be modified

in the ulincl.inc include file.

**

ulspc(id,Eout)

**

purpose: generate a random number according to given probabilities

**

id- generator id number : real*8

Ein- values array : real*8

This routine generates a random number (Eout) from a list with given probabilities.

The array of values (Ein) and probabilities (P) is given in the initialization routine ulspcini.

The main use of the routine is to generate the primary particle energy, when different

energies and intensities are possible. Typical examples are radioactive sources with

35

several photon energies. The routine can also be used in other cases, for instance when

several sources with different positions exist, etc.

Several different generators, with different ids are allowed. The routine uses the inverse-

transform method to generate the random numbers from the given list.

36

