Interactlwty and the Grid: the Web Service
approach

Why web-services?
- because the development of middleware points into this
direction.

See:
The Globus Toolkit:
GT2 - pre WS Gram. With GT3 / GT3: WS GRAM

See also:
Unicore:
Unicore 5: no Web Services. Unicore 6: Web Services.

What about glite?
Not yet. But since glite is based on GT2, who knows in
which direction glite will evolve. So better be prepared.



Method 1: using JobFactory

In GT4, WS based job submission is already implemented.
Is being used by globusrun-ws:
Managed]JobFactoryService, ManagedJobService,
ManagedExecutableJobService, DelegationService,
SubscriptionManagerService.

Glogin-ws: a Web Service based method to establish a
seperate interactive communication channel, same as in
pre-WS glogin. Glogin-ws makes use of the same services
as globusrun-ws.

Advantage: out of the shelf Web Services can be used.
Disadvanted: slower (up to 10 seconds due to gsipitp
polling), possible firewall issues.



?Method 2: a dedicated Web Service:¥3'r

I Interactivity.

Preliminary Feasibilty experiment: Interactive connection
with Java (Tomcat as Web Service container) using
HTTPS for transportation using “Gvid-Doom”.

Gvid Consumer Gyid Protocol - Gvid Producer
Process Process
A A

pES] OJ1
SEENFSIE

Y

) HTTPS “GET" Method Tomcat SewletJ

Thread O B

h < ) Fifo fof |Fifo f1
Thread 1 ) HTTPS "PUT" Method e TOmMcat SewletJ—

LN Fy L%

Java Client

Fifo fO W




Method 2: a dedicated Web Servicesfo
Interactivity.

Preliminary Feasibilty experiment: Interactive connection
with Java (Tomcat as Web Service container) using
HTTPS for transportation using “Gvid-Doom”.

Gvid Consumer Gyid Protocol - Gwid Producer
Process Process

-
-

Fast enough,
although using more CPU%

S O
SEETGITE
S8 O
SEENIIE

Y

HTTPS “GET" Method Tomcat SemletJ

- g

Thread O L
Fifo fO W \ . , Fi
Thread 1 ) HTTPS "PUT" Method e TOmMcat r;'ewletJ—
LN Ky L%

Java Client




- _=E int.eu.grid
]
]
= =-

Method 2: a dedicated Web Serwce-
Interactivity.

Web Services are different!

Additional layer (“marshalling”): encapsulation in SOAP/XML
each web-service invocation is:

connect()
SSL-Handshake

send SOAP/XML request
receive SOAP/XML reply
disconnect

=> extremely! Slow.



Method 2: a dedicated Web Serwce-?'
Interactivity.

If each WS-invocation creates a new connection: can we
somehow(??) re-use an existing WS-connection?

Answer: YES!

How is this done:

(1) client: asynchronous WS-mechanism with callbacks for
request/reply completion: create a copy of the outgoing
network descriptor (unix, posix: dup(2))

(2) Web-Service: use a supporiting method to search for

the network-descriptor a SOAP/ XML message was received
on. Unfortunately, the java.net.Socket object is not passed to
the WS-method, so it's necessary to examine all connections
in order to find out the right one.



| P

Method 2: a dedicated Web Serwce-
Interactivity.

To do this, the ws-client and the WS use cookies. Complete

flow of executlon

wsrfc-client

execute request callback:
create network socket
duplicate

execute reply callback

se

Connecty(), SSL-Ha Ndshake

send Reply (SOAP/XML)
disconnect
/.

InteractiveService
(globus-container, Java)

nd Request: co
- LOMmangd & g
Cookies (SOAP/){ML) | NLcal create supporting process:

_executeComma nd{SOAPMessage g€l

WS Termination

ss_init i ss_accept
gl. ) establish secure context gssS_ p.__
- exchange and verify processCookie (128 bit random data)

secure, bidirectional communication

ws-supp (JNI)

determine matching
network socket

interactive
command

local communication
via IPC




Conclusion and Future Work

* Conclusion: pretty fast mechanism. Demonstration?
Although not pure Java - it's not possible!

* Future Work: Not competing with glogin, but
rather: use this Interactive Service as another
alternative for glogin's job submission mechansim.
(glogin has better optimisation for data
transmission)

That's it. Thanks for listening.



