Exclusive Radiative B Decays at BaBar

Wouter Hulsbergen University of Maryland

on behalf of the BaBar collaboration

Outline

- motivation
- BaBar measurements of
 - $B \rightarrow (\rho, \omega) \gamma$
 - $B \rightarrow K^{(*)} 1^+ 1^-$
 - $B \rightarrow K_{\rm s}^{0} \pi^{0} \gamma$ (TD CPV)
 - $B \to K \pi \pi \gamma$
 - $B \rightarrow D^{*0}\gamma$

$b \rightarrow s,d$ transitions

- $b \rightarrow s, d$ transitions are a Flavor Changing Neutral Current
 - > absent in the standard model at tree-level
 - exist only at loop level

- heavy particles dominate in loop
 - in SM: sensitive to 'top' CKM parameters: $A \rightarrow V_{tb} V_{ta}^*$
 - sensitive to high virtual mass scale:

 \rightarrow e.g. from new physics

Radiative decays: $B \rightarrow X\gamma$ and $B \rightarrow Xl^+l^-$

3

Exclusive Radiative Decays

- <u>exclusive</u> decays are experimentally easier $B \rightarrow K^* \gamma, B \rightarrow \rho \gamma, B \rightarrow K^{(*)} 1^+1^-, ...$
- theoretical predictions more complicated
 - hadrons \neq quarks \rightarrow need Form Factors
 - different approaches: LCSR,CLFQM, lattice,...
- reasonably clean predictions for
 - ratios of branching fractions
 - CP asymmetries
 - photon polarization: angular distributions, mixing-induced CPV
 - forward-backward asymmetry in X_sl⁺l⁻
- several new physics models allow for observable differences with SM even if inclusive branching fraction is close to SM

PEP-II and Babar

- PEP-II: asymmetric-energy e+e- collider
 - operating at Y(4S) resonance (10.580 GeV)
 - asymmetric energy: 9.0 GeV e⁻ vs 3.1 GeV e⁺
- hadronic cross-sections:

uds/cc/bb = 2.1/1.3/1.1 nb

- Integrated lumi (July 2005): 255 fb⁻¹
 - > over 250M BB pairs!

BaBar

- 1.5 T superconducting coil
- 40 layer wire drift chamber
- 5 layer double sided silicon vertex detector
- CsI electromagnetic calorimeter (γ,e[±])
- cherenkov detector $(\pi/K/p)$
- muon detector (μ,K_L)

Experimental issues

- main challenge: rare decays → large backgrounds
- common strategy
 - select high energy photons / clean lepton pairs
 - suppress background with event topology, vertex separation,
 tag on opposite B, π⁰/η vetos, ...
 - Sestimate 'peaking' background from other B decays from MC

PRD 70, 112006 (2004)

Most easily accessible: $B \rightarrow K^* \gamma$

BF measurements on 82 fb⁻¹:

B(B^0 → K^{*0} γ) = (38.7 ± 2.8 ± 2.6) x 10⁻⁶ **B**(B^+ → K^{*+} γ) = (39.2 ± 2.0 ± 2.4) x 10⁻⁶

- almost systematics limited !
- data more accurate than theory
 - ➔ important calibration for Form Factor calculations
- asymmetries also measured precisely:

 $B \rightarrow \rho \gamma$ and $B \rightarrow \omega \gamma$

Motivation:

- $b \rightarrow d\gamma$ transition, BF $\propto |V_{td} V_{tb}|^2$
- SM prediction: 0.9 1.8 x 10⁻⁶
- clean SM prediction for ratio of $B \rightarrow \rho/\omega\gamma$ and $B \rightarrow K^*\gamma$:

Ali and Parkhomenko, Eur.Phys.JC 23,89 (2002) Ali et al, PLB 595,323 (2004)

$$rac{\overline{\mathcal{B}}[B
ightarrow (
ho/\omega)\gamma]}{\mathcal{B}(B
ightarrow K^*\gamma)} = \left|rac{V_{td}}{V_{ts}}
ight|^2 \left(rac{1-m_
ho^2/M_B^2}{1-m_{K^*}^2/M_B^2}
ight)^3 \zeta^2 [1{+}\Delta R]$$

with average BF:

$$\overline{\mathcal{B}}[B \to (\rho/\omega)\gamma] = \frac{1}{2} \left\{ \mathcal{B}(B^+ \to \rho^+ \gamma) + \frac{\tau_{B^+}}{\tau_{B^0}} \left[\mathcal{B}(B^0 \to \rho^0 \gamma) + \mathcal{B}(B^0 \to \omega \gamma) \right] \right\}$$

Ali et al, PLB 595,323 (2004) difference in dynamics

(such as W-annihilation) $\Delta R \approx 0.1 \pm 0.1$

form factor ratio ζ²≈ 0.85±0.1 (largest uncertainty)

Experimental difficulties

- large continuum background \rightarrow reject with event shape, ΔZ
- background from $B \rightarrow K^* \gamma$ \rightarrow reject with PID, ΔE
- background from $B \rightarrow \rho \pi^0$, $\rho \eta$, $\omega \pi^0$, $\omega \eta \rightarrow \text{reject}$ with helicity angles, π^0/η vetos

$B \rightarrow \rho \gamma$ and $B^0 \rightarrow \omega \gamma$

Yield and BF in 211M BBar

Mode	Signal Yield	$\epsilon(\%)$	$\mathcal{B}(10^{-6})$	$\mathcal{B}(10^{-6})$ 90% C.L.
$B^+ o ho^+ \gamma$	$26{}^{+15+2}_{-14-2}$	13.2 ± 1.4	$0.9 \ ^{+ \ 0.6}_{- \ 0.5} \ \pm \ 0.1$	< 1.8
$B^0 o ho^0 \gamma$	$0.3\substack{+7.2+1.7\\-5.4-1.6}$	15.8 ± 1.9	$0.0\pm0.2\pm0.1$	< 0.4
$B^0 o \omega \gamma$	$8.3\substack{+5.7+1.3\\-4.5-1.9}$	8.6 ± 0.9	$0.5\pm0.3\pm0.1$	< 1.0
Combined			$0.6\pm0.3\pm0.1$	< 1.2

PRL 92, 111801 (2004)

 $B \rightarrow \rho \gamma$ and $B^0 \rightarrow \omega \gamma$

$B \rightarrow Kl^+l^-$ and $B \rightarrow K^*l^+l^-$

hep-ex/0507005, preliminary

Motivation

- SM predictions:
 - **BF** ~ 10⁻⁶
 - negligible direct CP asymmetry
 - $\mathbf{R}_{\mathrm{K}} = \mathbf{B}(B \rightarrow K \mu^{+} \mu^{-}) / \mathbf{B}(B \rightarrow K e^{+} e^{-}) \approx 1$
 - $R_{K^*} = B(B \rightarrow K^* \mu^+ \mu^-) / B(B \rightarrow K^* e^+ e^-) \approx 0.75$
 - q² -distribution sensitive to relative contribution of γ-, Z-penguin and box diagram
- new physics can show up in any of these

Experimental issues

- clean signature but very small BF
- large background from $B \rightarrow K^{(*)} \psi$:
 - > apply veto and use as control sample

<u>SM diagrams</u>

$B \rightarrow Kl^+l^-$ and $B \rightarrow K^*l^+l^-$

hep-ex/0507005, preliminary

Mixing induced CP violation in $B \rightarrow K_s \pi^0 \gamma$ submitted to PRL

nixing

 $\overline{\mathrm{B}}{}^{0}$

Motivation

- time-dependent CPV: interference between amplitudes for direct and 'mixed' decay
 - \succ in *B*⁰ →*K*^{*0}γ phase between mixed and unmixed decay is 2β
- Atwood, Gronau, Soni (1997)
 - → W couples only to left-handed quark: $b \rightarrow s \gamma_{L}$
 - \succ interference suppressed in SM: $S_{mix} ≈ -0.04 sin(2β)$
 - possibly large enhancement from NP
- recent theoretical development:
 - Atwood et al (2004): can use $K_s \pi^0$ even if not from resonance
 - Grinstein at al (2005): final state effects $O(\Lambda/m_B)$ depend on $m_{K\pi}$

<u>Analysis</u>

- split sample in K* (0.8 < m(Kπ) < 1.0 GeV) and 'non-K*' (1.1 < m(Kπ) <1.8 GeV)
- max likelihood fit to m_{ES} , ΔE , Δt , and event shape

Main complications

- measure B vertex with one trajectory (like in $K_s \pi^0$, well established by now)
- Iarge background from other B decays: assign systematic uncertainty

 $K^* \gamma_R$

 $\blacktriangleright K^* \gamma_t$

Helicity Flip

Suppressed by ~ m_/m_

Mixing induced CP violation in $B \rightarrow K_s \pi^0 \gamma$ submitted to PRL

 $B \to K \pi \pi \gamma$

hep-ex/0507031, preliminary

Motivation (Gronau et al (2002))

photon polarization can be probed via up-down asymmetry

• requires interference through resonances $(K\pi^+) \pi^0 \leftrightarrow (K\pi^0) \pi^+$

<u>Analysis strategy</u>

select candidates in four decay modes:

 $K^{+}\pi^{-}\pi^{+}\gamma, K^{+}\pi^{-}\pi^{0}\gamma, K^{0}\pi^{+}\pi^{-}\gamma, K^{0}\pi^{+}\pi^{0}\gamma$

(modes with 2 pi0 have too much background)

• maximum likelihood fit to ΔE , m_{ES}

Experimental challenges

- Iarge continuum background
 - ➔ reject with cut on event-shape Fisher
- background from other $B \rightarrow X_s \gamma$ ('feed-up' and 'feed-down')
 - → estimate impact with MC
- cross-feed between modes

→ fit all modes simultaneously using cross-feed matrix

Branching fraction of $B \rightarrow K\pi\pi\gamma$

16

Branching fraction of $B \rightarrow K\pi\pi\gamma$

 $B^0 \rightarrow D^{*0} \gamma$

hep-ex/0506070, submitted to PRL

Motivation

- weak annihilation diagram
 - \succ understanding important for $b \rightarrow d\gamma$
- •SM expectation: 1 x 10⁻⁶ (Cheng, '94)

Analysis strategy

- cut-and-count analysis
- 6 decay modes: $D^* \to D^0 \gamma, D^0 \pi^0$ $D^0 \to K \pi^+, K \pi^+ \pi^0, K \pi^+ \pi^+ \pi^-$
- total efficiency = $1.8 \pm 0.3 \%$

<u>Results</u>

• event yield in 80/fb:

expected background:9.4 ± 1.7observed:13

• BF($B^0 \rightarrow D^{*0} \gamma$) < 2.5 10⁻⁵ at 90% CL

Summary

Exclusive radiative B decays

- are a sensitive probe for new physics in FCNC
- well experimentally accessible with samples of 10⁸ BB

BaBar measurements

- $B \rightarrow X_s \gamma$ BFs and CP-asymmetries become precision measurements
- no significant signal for $b \rightarrow d\gamma$
 - \rightarrow our results favor a low value of V_{td}
- $B \rightarrow Kl^+l^-$, $B \rightarrow K^*l^+l^-$ and TDCPV in $B \rightarrow K_s \pi^0 \gamma$ still statistics limited, but ...

we are looking forward to much more statistics!

