
The European Grid Technologies Research Initiative

Grid Open DayLisbon, 21 October 2004

Maria Tsakali
Scientific Officer
DG Information Society
Grid Technologies

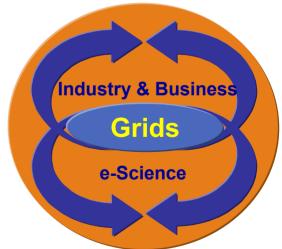
http://www.cordis.lu/ist/grids/

- 1. IST Vision: « Ambient Intelligence »
- 2. Grid Vision: Towards the « Invisible Grid »
- 3. Initial FP5 results & Lessons Learnt (2000-02)
- 4. The EU Grid Initiatives in FP6 (2002-06)
- 5. Future Challenges
- 6. Conclusions

Information Society Programme Vision 'Ambient Intelligence (Aml)'

2. Grid Vision: Towards the « Invisible Grid »

What is Grid?


"A Grid provides an abstraction for resource sharing and collaboration across multiple administrative domains..."

(Source: NGG Expert Group, 16 June 2003 "European Grid Research 2005-2010)

Benefits

□ Increased productivity by reducing Total Cost of Ownership

- ⇒ Any-type, anywhere, anytime services by/for all
- □ Infrastructure for dynamic virtual organisations

Technology Forecast 2002

« The Internet will eventually emerge as a global networked utility, replacing computing as we know it today »

PriceWaterhouseCoopers

Grid Research - the Challenge Complexity - Interoperability - Ease of Use - ...

Evolution of HPCN

Knowledge Technologies

Complex Systems

Computing Architectures

Current Grids Generation
Grids

Next

ServiceOriented
Knowledge
Utility

Evolution of the Web

Software Technologies

Mobile Services Global Computing

Next Generation Grid(s): 3-fold vision

"Next Generation Grid(s) - European Grid Research 2005 - 2010", June 2003 "Next Generation Grids 2 – Requirements and Options for European Grids Research 2005–2010 and beyond", August 2004

J-4.

J-4. **Simplification Abstraction Next** Generation **Grids Architectural Vision**

- Societal behaviour (millions of self-organising nodes)
- Computational semantics, ontologies, meta-descriptions
- Pervasive virtual organisations

Virtualization

Next Generation Grid(s): Identified Research Themes

Properties Open Reliable Scalable Persistent Transparent Person-centric Pervasive Secure / trusted

NGG2 reinforced:

- Network-centric Grid OSs
- Making Grids mobile
- Mastering complexity
 based on scenarios for crisis
 management / pro-active PDA
 (published August 2004)

Research Themes

NextGeneration

Grid(s)

Standards-based

Facilities

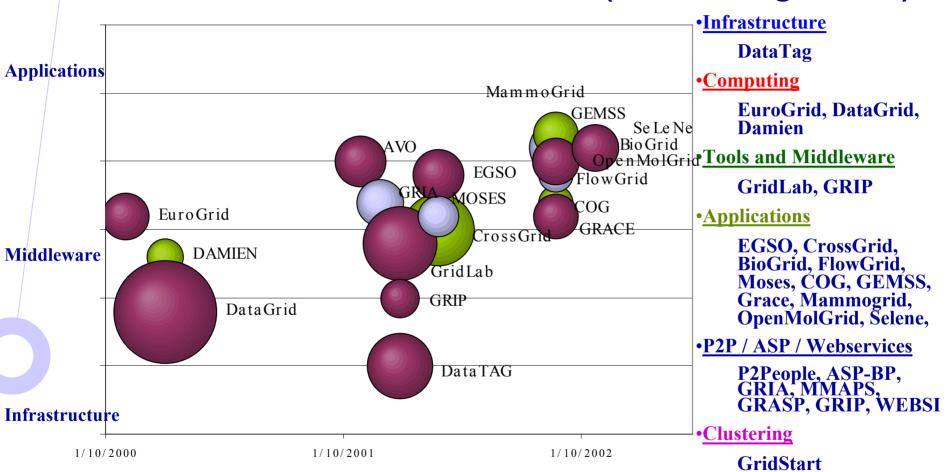
Facilities

Management
Co-ord. and
orchestration
Information representation

Virtual

User
Interface
Grid
Economies
Business
models

Models


3. Initial FP5 results & Lessons Learnt

EU FP5 Grid Projects 2000-2004

(EU Funding: 58 M€)

FP5 Grid project achievements

Examples

- Grid infrastructures
 GRIP GRIA GRASP DATAGRID
- Portals and application environments Gridlab - Crossgrid
- Applications specific products and services
 Openmolgrid Flowgrid
 BioGrid MammoGrid GEMSS
 GRACE CrossGrid ...

FP5 EU Grid Research Achievements

- Creation of a <u>strong Grid research community</u>
- Europe's position strengthened related to
 - **⇒** Grid middleware development
 - **⇒** Contribution to standardisation
- Leading position established for <u>vertical Grid Middleware</u> oriented towards specific application requirements
- First steps taken towards <u>maturing Grid technologies</u> for industrial and business use
- Grid concept proven in <u>eScience application pilots</u> followed by <u>deployment in research infrastructures</u>
- Identified <u>weaknesses in commercial exploitation</u>
- Emergent opportunities for service providers

4. The EU Grid Initiatives in FP6 (2002-06)

Grid Research Infrastructures & Applications in FP6

Application Research & Deployment

Industrial / Societal
Applications
eBusiness, eGov, eWork,

eHealth, risks management, ...

200 M€

Research Infrastructures

- Deployment of high-capacity/speed communications network – GÉANT
- Deployment in Research of Grids

Grid RTD

Related Research **Grid Technologies**

125 M€

- Grid-enabled applications and services for business society
- Technologies and systems for building the invisible Grid
- Network-centric Grid operating systems

Software-, Web-, Knowledge Technologies, Broadband-, Mobile Communication Technologies, Security

Anfrastructure - implementation blocks networking **Biomedic** Zspecific services joint research activities federated testbeds INFE Nobal film EU Policies M. Tsakali, Directorate-General Information Society, European Commission Scientific Officer - Grid Technologies Grid Open Day - Lisbon - 21 October 2004

European Commission

Information Society

Grid Deployment and Testbeds in FP6

User involvement... **New user**

DILIGENT

Real time Grid nstruments for remote control of **GRIDCC**

···technology validation solutions for Optical Grid **MUPPET**

Service Assurance Quality o Flexible

EUQoS

IPv6TF SC

IPv6 Task Force support

LOBSTER

Experimental testbeds

EUROLABS

Specific Support Actions

Traffic monitoring

European Commission

Grid deployment in e-infrastructures

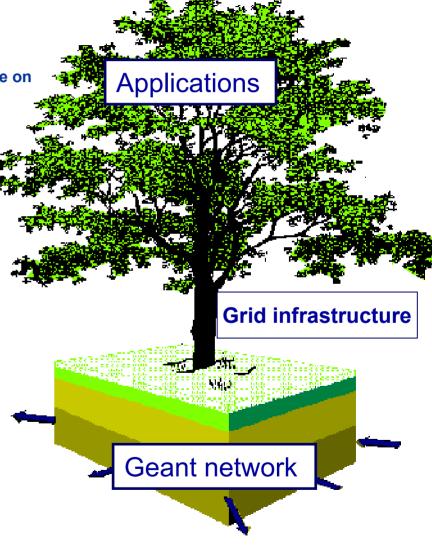
Goal

 Create a European-wide Grid production infrastructure on top of present and future EU RN infrastructure

Build on

- EU and EU member states major investments
- International connections (US and AP)

Scope


Operations services, networking, pilots

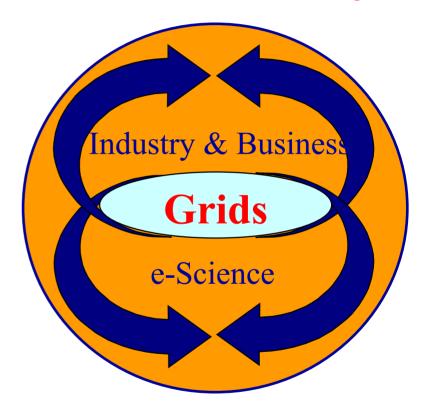
Middleware

Hardening & re-engineering of existing middleware functionality

Approach

- Leverage current and planned national and regional Grid programmes
- Work closely with relevant industrial Grid developers, NRENs and US-AP projects

M. Tsakali, Directorate-General Info Scientific Office Grid Open Day – Lisbon – 21 October 2004



FP6 Grid Research Objectives

Moving Grid from e-Science to Industry

Promote Grid research to

- ⇒ Exploit the potential of Grids beyond e-Science
- ⇒ Support the development of Next Generation Grids

IST Workprogramme 2003-04 Grids for Complex Problem Solving

Grids for Com

Application
Sector 1

Application Sector 3

Application

Applications
e-business,
e-health, e-gov,
e-learning,
environment

Generic enabling application technologies

Tools and environments for simulation, data mining, knowledge discovery, collaborative working, ...

Next generation Grid

Architecture, design and development addressing security, business models, open source/standards,interoperability, ...

"Grids for CPS" focus

New Grid Research Projects in FP6

GRIDCOORD

Building the ERA in Grid research

Start: SUMMER 2004

K-WF Grid
Knowledge based
workflow &

UniGridS
Extended OGSA
Implementation based
on UNICORE

HPC4U
Fault tolerance,
dependability
for Grid

Grid-based generic enabling application technologies to facilitate solution of industrial problems SIMDAT

EU-driven Grid services architecture for businesS and industry
NextGRID

Mobile Grid architecture and services for dynamic virtual organisations

Akogrimo

European-wide virtual laboratory for longer term Grid research-creating the foundation for next generation Grids CoreGRID

inteliGRID Semantic Grid based virtual organisations

OntoGrid
Knowledge Services
for the semantic Grid

DataminingGrid
Datamining
tools & services

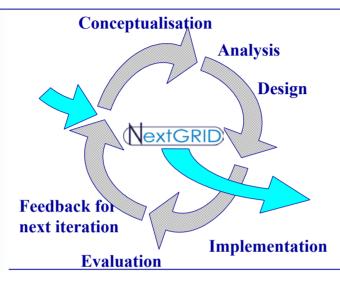
Provenance Trust and provenance for Grids

Specific support action

Integrated project

Network of excellence

Specific targeted research project



Integrated Project

Next Generation Grid services architecture for business and industry

Research org.:

EPCC IT Innov.
FZJ USTUTT
KTH NTUA
QUB UVA

Technology providers:

Grid Systems

HP Intel

Microsoft Nec

Service providers:

Fujitsu BT

T-Systems

Datamat

Application developers / users:

SAP

First derivatives

Kino

CNR-IST

Integrated Project

Two testbeds

- **E-Learning**
- Hospital
- Generalisation to
- other applications

AKoGriMo Focus

Technology Vision

- ➤ NGG based on next generation IPv6 networks and supporting security, QoS, accounting /billing, user & context awareness.
- Use of mobile comm's beyond 3G.
- "GRIDNET" ➤ Dynamic Virtual
 Organisations based on
 trust management

Mobile Grid architectures and services for dynamic virtual organisations

Telcom operators

- Telefonica I&D (SP)
- Telnor (N)
- Tel Inst (P)

Grid Providers & Industry

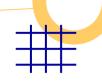
- HLRS (D)
- CCLRC (UK)
- Uni Hohenheim (D)
- Datamat (I)

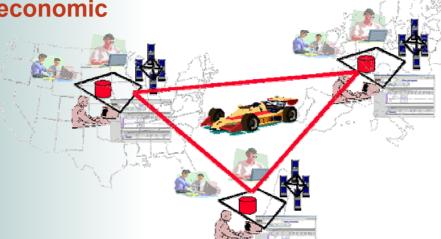
Universities

- Uni BW München (D)
- CRMPA (I)
- NTUA (Gr) UPC(SP)

IT Industry (tools & services)

- BOC (UK)
- SchlumbergerSEMA




Integrated Project

Four sectors of international economic importance:

- Automotive
- Pharmaceutical
- Aerospace
- Meteorology

Seven Grid-technology development areas:

- Grid infrastructure
- Distributed Data Access
- VO Administration
- Workflows
- Ontologies
- > Analysis Services
- Knowledge Services

The solution of industrially relevant complex problems using data-centric Grid technology

Objectives

- **Build S&T excellency on Grid -EU-wide virtual laboratory**
- Achieve sustainable restructuring and integration
- Disseminate EU research on Grid
- Set-up a think-tank to create spin-off projects
- **Create the European "Grid Lighthouse"**

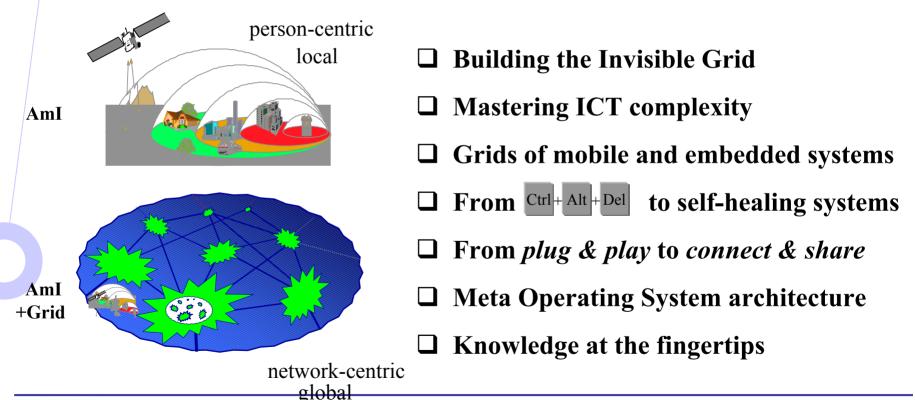
Research Focus

- **Knowledge and data management**
- **Programming models**
- **System architecture**
- Resource management
- **Scheduling**
- **Problem solving environments**

European Research Network on Foundations, Software Infrastructures and **Applications for Large Scale Distributed, Grid and Peer-to-Peer Technologies**

> **EU Virtual Institutes** ထ

5. Future Challenges



Grid research vision - 2007 and beyond

Grid empowers AmI (Ambient Intelligence)

Towards a Service-oriented knowledge utility for Business & Industry

Research Infrastructure: Next Calls for proposals in FP6

Year 2004

Year 2005

Year 2006

eInfrastructure - Consolidating initiatives

- New user communities
- Policies, Resource registries
- International aspects

25 M

eInfrastructure - Grids

Continue building advanced Grid-empowered infrastructures Emphasis on:

- Production quality & ready-to-use
- SW-infrastructures
- Address industry requirements
- Environments dynamically adaptable to user needs

55 M

Test-beds

- Optical, Wireless, Security, Grids, other technologies.
- User involvement / technology validation

18 ME

IST Workprogramme 2005-06 Advanced Grid Technologies, Systems and Services

pplicatio

Technology Push

Grid-enabled Applications & Services for business and society

Research, development, validation and take-up of generic environments and tools

Grid Foundations

Architecture, design and development of technologies and systems for building the invisible Grid

Network-centric Grid Operating Systems

Potential new fabric layer for future distributed systems and services

Advanced
Grid
Technologies,
Systems
and Services

Grid Research: Next Calls for proposals in FP6

Nov 2004: Publication of Workprogramme

Opening Call 4

IST2004 Conference (15-17)

May 2005: Opening Call 5, incl. Strategic

Objective « Advanced Grid

Technologies, Systems and

Services » (~ 70 M€)

Sept 2005: Closing Call 5

6. Conclusions

Conclusions (1)

Grid Potential

- ✓ Grid as a utility: a new paradigm for service delivery
- ✓ Grids: a key building block of the knowledge economy
- ✓ Grids: as an enabler for innovation (e.g., business, life sciences, etc.)
- ✓ Grids: a new service and business model for IT and Telco service providers

Conclusions (2)

IST Grid Programme

- ✓ EU expects to capitalise on its strengths in Grid research and applications through strategic portfolio of new FP6 Grid Research projects launched September 2004
- ✓ ERA Pilot 'GridCoord' and NoE 'CoreGrid' as well as Research Infrastructures projects 'EGEE' and 'DEISA' are essential building blocks for a European Research Area for Grids
- ✓ More coherent approaches and joint longer-term strategies supported by commitments from all key stakeholders is required to secure commercial benefits
- ✓ The Grid of the future is a global challenge, thus
 International co-operation and standards are essential

References /Background Information

Grid research:

www.cordis.lu/ist/grids

elnfrastructure:

www.einfrastructures.org www.pd.infn.it/einfrastructures www.heanet.ie/einfrastructures www.e-irg.org/

