

LIP participation in the C MPASS Experiment

January 2003 – March 2008

Team leader: Paula Bordalo

Researchers: Paula Bordalo, João Cruz, Catarina Quintans,

Sérgio Ramos, Helena Santos

PhD students: Celso Franco, Luís Silva

Technical research assistants: Ana Sofia Nunes, Christophe Pires

Past members: Maria Varanda, João Bastos (Pos-docs),

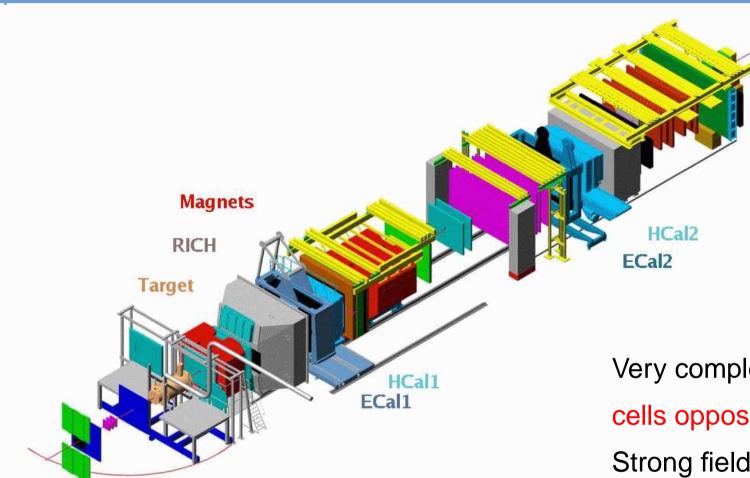
David Sora, Francisco Mota (tech. research assistants),

Katharina Schmidt, Helena Moreira (undergraduate students)

Historical introduction

- The COMPASS experiment at CERN had its scientific proposal fully approved in 1998. After a few years for building and installing the spectrometer, in 2001 the first Technical Run took place. The data taking for Physics started in 2002.
- In August 2002, a proposal from LIP (P. Bordalo, S. Ramos and C. Quintans) to join COMPASS, taking the full responsibility of the DCS, was presented to the Group Leaders Board of COMPASS.
- The LIP-COMPASS group was accepted, and LIP members participated in the data taking on the fall of 2002.
- LIP joined COMPASS officially in January 2003 (MoU).

The COMPASS Experiment at CERN


COMPASS: COmmon Muon and Proton Apparatus for Structure and Spectroscopy

- Studies of the nucleon spin structure (2002 2007)
 - with polarized muon beam (μ^+ at 160 GeV/c, \approx 80% polarized) and polarized targets (6 LiD and NH $_3$)

- Studies of hadron spectroscopy (2008 ...)
 - pilot Run during 4 weeks in 2004
 - with hadron beam (π^-) and several unpolarized targets (Pb, Cu, C and liquid H₂ in 2008)

The COMPASS set-up

Very complex solid state target:

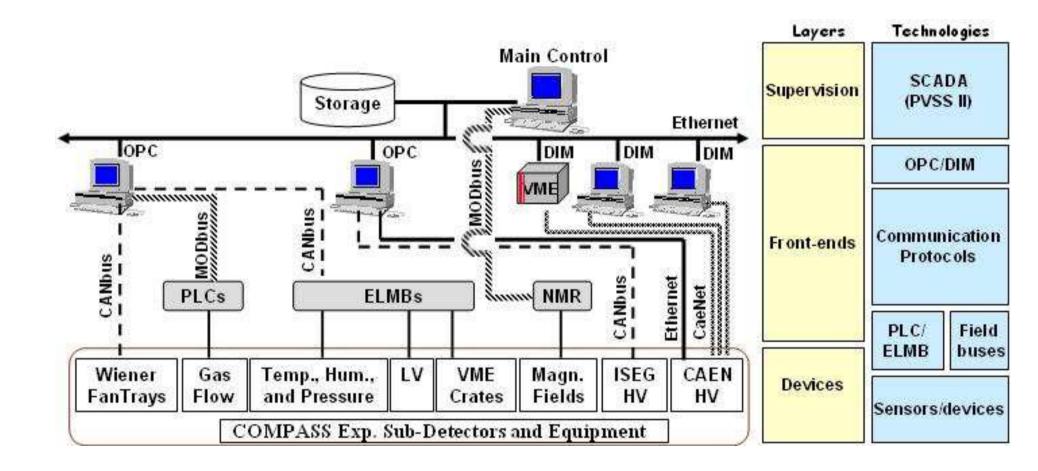
cells oppositely polarized.

Strong field and very low temperature keep the nucleons spin frozen.

⁶LiD: $P_T \approx 50\%$, $f \approx 40\%$

NH₃: $P_T \approx 90\%$, $f \approx 15\%$

LIP group technical responsibilities


- Full responsibility of the Detector Control System (DCS)
- Participation in the RICH upgrade
- Participation in Monte-Carlo productions
- Studies of track reconstruction algorithms using cellular automate methods

Technical responsibilities: DCS

- The Detector Control System was revised and redesigned, its scope enlarged and its performance increased.
- It uses software tools adopted by most of the CERN experiments, and some specific, COMPASS-dedicated ones.
- Presently, 2 technical research assistants work full time in the DCS. 3 physicists give support (30% time participation).
- Assistance from the IT/CO group at CERN is provided to the DCS team. Over the last 5 years, the COMPASS-DCS has served as test-bench for control solutions to be used by all LHC experiments.

 The DCS is now being adapted for the control of the new detectors present in the 2008 Hadron Run

The User Interface of the DCS

DCS group tasks

- Integration of new detectors/equipments in the control system.
- Maintenance and Upgrades of all the software for controls/monitoring.
- Front-ends instrumentation for the interface with the DCS
- Provide permanent support during all the Data Taking period (\approx 6 months Run/year).
- Provide detectors experts with the controlled parameters data, for studies of stability and detectors performance.

The so-called *nucleon's spin puzzle* is a long-standing problem, addressed by COMPASS with its polarized muon deep inelastic scattering measurements.

1988: EMC measured the quarks contribution to the spin of the nucleon to be very small!

• The present value is (at $Q^2 = 3$ (GeV/c)²):

$$\Delta \Sigma = 0.30 \pm 0.01 (\mathrm{stat}) \pm 0.02 (\mathrm{evol})$$

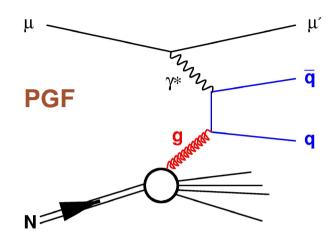
→ PLB 647 (2007) 8-17

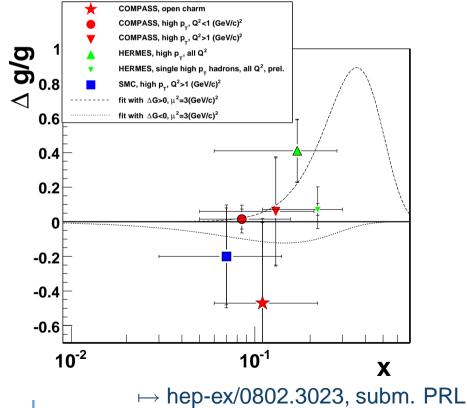
The μ -deuteron asymmetry is measured from the difference between cross-sections from 2 oppositely polarized target cells:

$$A^{\mu d} = \frac{1}{f P_T P_B} \left(\frac{N^{\leftrightarrows} - N^{\leftrightarrows}}{N^{\leftrightarrows} + N^{\leftrightarrows}} \right)$$

From the measured asymmetries one can conclude that:

- $\Delta u_v + \Delta d_v = 0.40 \pm 0.07 (\mathrm{stat}) \pm 0.05 (\mathrm{syst})$ (for $Q^2 = 10$ (GeV/c)²).
- Results seem to favor $\Delta ar{u} = -\Delta ar{d}$ (at 2σ CL).


→ PLB 660 (2008) 458-465


• $\Delta s + \Delta \bar{s} = -0.08 \pm 0.01 (\mathrm{stat}) \pm 0.02 (\mathrm{syst})$ (for $Q^2 \to \infty$).

→ PLB 647 (2007) 8-17

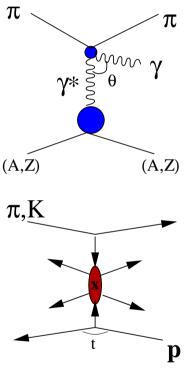
Gluons polarization in the nucleon

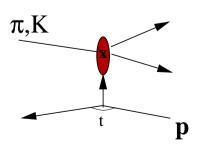
The gluons contribution to the nucleon spin can be extracted by selecting events from the photon-gluon fusion process:

- By selecting pairs of hadrons with high p_T
- By selecting open-charm mesons

 \approx 1/3 of the data still to be analysed.

COMPASS 2008-2010: the Hadron Program




COMPASS will use a π^- (95%)+ K^- (4%) beam, incident in a liquid H₂ target to study:

• π polarizabilities from Primakoff scattering – which constitute a test of chiral perturbation theory.

search for glueballs from central production.

• study of J^{PC} -exotic mesons from diffractive production.

Analyses contributions from LIP

- 2 PhD theses being prepared on the extraction of $\Delta G/G$:
 - Analysis of 2002 2006 data on high- p_T hadron pairs at $Q^2 > 1$ (GeV/c)²;
 - Analysis of 2002 2006 data on open-charm production.
- Strong participation in the analysis of inclusive and semi-inclusive asymmetries, for extraction of the quarks spin contribution and flavor separation.
- Participation in the analysis of J/ ψ asymmetries.
- Interest in the analyses of the Hadron Program fi rst steps in the fi eld of partial wave analysis formalism.
- Participation in the Drell-Yan program effort simulations of physics and apparatus.

The COMPASS future

Ideas for new spin physics studies with an upgraded spectrometer are emerging:

- Generalized Parton Distribution functions (GPDs)
 - \hookrightarrow Using polarized μ beam and unpolarized H target, and a recoil proton detector to access L_z of quarks.
- Polarized Drell-Yan process (DY)

These will soon be formalized in a new physics proposal.

Some LIP output indicators

- The LIP group is well integrated in COMPASS.
- LIP members participate regularly in COMPASS meetings (18 talks given in 2007; 3 talks given in 2008, up to now).
- LIP members represented the Collaboration in International Conferences: 1 talk in 2005; 2 talks in 2006; 3 talks in 2007.
- LIP members participate in the data taking periods (shift duties; exclusive on-call duties for DCS; data taking week coordination).
- Published papers: 5 in PLB (+1 submitted); 2 in EPJ; 1 in NP B; 2 in NIM A; (+1 submitted PRL).
 14 conference proceedings.

A fruitful cooperation, which we look forward to continue