BEACH 2018- XIII INTERNATIONAL CONFERENCE ON BEAUTY, CHARM AND HYPERON HADRONS

Charm mixing and CPV

<u>Giulia Tuci</u>, on behalf of the LHCb collaboration giulia.tuci@cern.ch

Peniche, 19/06/2018

Istituto Nazionale di Fisica Nucleare

Outline

CPV in charm @ LHCb

Direct CPV:

- > ΔA^{CP} in $\Lambda_c \rightarrow ph^+h^-$ [JHEP 03(2018)182]
- > A^{CP} in $D^0 \rightarrow K_s^0 K_s^0$ [arXiv:1806.01642] submitted to JHEP **NEW**
- > A^{CP} in $D^0 \rightarrow h^+h^-\mu^+\mu^-$ [LHCb-PAPER-2018-020] in preparation NEW

Charm mixing and indirect CPV:

> $D^0-\overline{D}^0$ mixing and CPV with $D^0 \rightarrow K^+\pi^-$ [PRD 97(2018) 031101]

CPV in charm

- Charm transitions are a unique portal for obtaining a novel access to flavor dynamics
 - complementarity wrt B and K mesons
 - > CPV in charm predicted $\sim O(10^{-3})$:

low SM background \rightarrow sensitivity to "New Physics"

- CPV in charm decays has not yet been observed!
- Large samples of charm mesons decays needed \rightarrow LHCb
 - > ~10⁶ cc pairs per second produced in LHCb acceptance $(2 < \eta < 4.5, 0 < p_T < 8 \text{ GeV/c})$ at LHC
 - ➢ Good momentum resolution (0.5% 1%)
 - > Excellent vertex resolution (IP resolution (15+29/ p_T) μ m)

JHEP 05 (2017) 074

 $\sigma(pp \rightarrow D^{0}X) = 2072 \pm 2 \pm 124\mu b \qquad \sigma(pp \rightarrow D_{s}^{+}X) = 353 \pm 9 \pm 76\mu b$ $\sigma(pp \rightarrow D^{+}X) = 834 \pm 2 \pm 78\mu b \qquad \sigma(pp \rightarrow D^{*+}X) = 784 \pm 4 \pm 87\mu b$ Giulia Tuci, 19/06/2018 Charm mixing and CPV

Direct CPV

Difference of decay rate between two CP conjugate states

$$\mathcal{A}^{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

Quantity measured in LHCb

$$\mathcal{A}^{raw} \equiv \frac{N_D - N_{\overline{D}}}{N_D + N_{\overline{D}}}$$

$$\mathcal{A}^{raw} pprox \mathcal{A}^{CP} + \mathcal{A}^{prod} + \mathcal{A}^{det}$$

Direct CPV

Difference of decay rate between two CP conjugate states

$$\mathcal{A}^{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

Quantity measured in LHCb

$$\mathcal{A}^{raw} \equiv \frac{N_D - N_{\overline{D}}}{N_D + N_{\overline{D}}}$$

Production asymmetry: initial state pp is not CP symmetric

$$\mathcal{A}^{raw} pprox \mathcal{A}^{CP} + \mathcal{A}^{prod} + \mathcal{A}^{det}$$

Direct CPV

Difference of decay rate between two CP conjugate states

$$\mathcal{A}^{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

Quantity measured in LHCb

$$\mathcal{A}^{raw} \equiv \frac{N_D - N_{\overline{D}}}{N_D + N_{\overline{D}}}$$

Production asymmetry: initial state pp is not CP symmetric

$\Delta A^{CP} \text{ in } \Lambda_{c} \rightarrow ph^{+}h^{-}$

CPV in charm baryons almost unexplored

 $A_{CP}(\Lambda_c^+ \rightarrow \Lambda^0 \pi^+) = (-7 \pm 31)\%$ FOCUS, PLB 634 (**2006**) 165 $A_{CP}(\Lambda_c^+ \rightarrow \Lambda^0 e^+ v_e) = (0 \pm 4)\%$ CLEO, PRL 94 (**2005**) 191801

- Dataset: full Run1 sample (3 fb⁻¹)
- Production mode: $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- X$
 - > requirements on $\Lambda_c^+ \mu^-$ vertex displacement suppress background
- ♦ Measured quantity: ΔA^{CP} = A^{CP} (Λ_c⁺→ pK⁺K⁻)-A^{CP} (Λ_c⁺→ p π⁺π⁻)
 - Detector and production asymmetries <u>cancel if kinematics are identical</u>
 - > $p\pi^+\pi^-$ kinematics equalized to pK^+K^- kinematics before extracting raw asymmetry, weights computed using GBDT
 - > Per candidate weights provided for theoretical interpretation

$\Delta A^{CP} \text{ in } \Lambda_{c} \rightarrow ph^{+}h^{-}$

[JHEP 03(2018)182]

- Measured phase-space integrated CPV
- Cut-based selection to avoid creating kinematic differences between decay modes
- ♦ A^{raw} extracted fitting ph⁺h⁻ mass distribution and corrected for efficiency variation across 5D phase-space → from simulated events

ΔA^{CP} in $\Lambda_c \rightarrow ph^+h^-$

Results

ΔA^{CP}=(0.30±0.91±0.61)%

Consistent with no-CPV hypothesis

Main systematic uncertainty arises from limited simulation sample-size.

Results consistent varying data-taking period (centre-of-mass energy) and magnet

A^{CP} in $D^0 \rightarrow K_S^{\ 0} K_S^{\ 0}$

- Search of CPV in decay channels with high statistics not conclusive
- Different approach: search CPV in decay channels where amplitudes are suppressed
 - > $D^0 \rightarrow K_s^0 K_s^0$, where A^{CP} could be enhanced at a level of ~1%

B.R. (D⁰
$$\rightarrow$$
 K_S⁰K_S⁰) = (1.8 ± 0.4) x 10⁻⁴

Previous measurements

$\mathcal{A}^{CP}(K^0_{ m s}K^0_{ m s})$ (%)	Yield	Collaboration
$-23. \pm 19.$	65 ± 14	CLEO
$-2.9 \pm 5.2 \pm 2.2$	635 ± 74	LHCb Run-1
$-0.02 \pm 1.53 \pm 0.17$	5399 ± 87	Belle

PRD 92 (2015) 054036

CLEO PRD 63 (2001) 071101 LHCb (Run1) JHEP 10 (2015) 055 Belle PRL 119 (2017) 171801

A^{CP} in $D^0 \rightarrow K_S^{\ 0} K_S^{\ 0}$

- $D^{*+} \rightarrow D^0 \pi^+$ decay used to tag D^0
- To remove production and detection asymmetries

 $D^0 \rightarrow K^+K^-$ is used as a calibration channel

$$\Delta \mathcal{A}^{CP} \equiv \mathcal{A}^{\text{raw}}(K^0_{\text{s}}K^0_{\text{s}}) - \mathcal{A}^{\text{raw}}(K^+K^-)$$
$$= \mathcal{A}^{CP}(K^0_{\text{s}}K^0_{\text{s}}) - \mathcal{A}^{CP}(K^+K^-).$$

$$\Rightarrow A^{CP}(K_{S}^{0}K_{S}^{0}) = \Delta A^{CP} + A^{CP}(K^{+}K^{-})$$

Independently measured by LHCb with a precision of ~0.1% PLB767(2017)177

 π^+

Π¹

Π

Π

 K^0_{S}

 K^0

D0

 π_{tag}

A^{CP} in $D^0 \rightarrow K_S^0 K_S^0$

- $D^{*+} \rightarrow D^0 \pi^+$ decay used to tag D^0
- To remove production and detection asymmetries

 $D^0 \rightarrow K^+K^-$ is used as a calibration channel

$$\Delta \mathcal{A}^{CP} \equiv \mathcal{A}^{\text{raw}}(K^0_{\text{s}}K^0_{\text{s}}) - \mathcal{A}^{\text{raw}}(K^+K^-)$$
$$= \mathcal{A}^{CP}(K^0_{\text{s}}K^0_{\text{s}}) - \mathcal{A}^{CP}(K^+K^-).$$

$$\Rightarrow A^{CP}(K_S^0 K_S^0) = \Delta A^{CP} + A^{CP}(K^+ K^-)$$

Independently measured by LHCb with a precision of ~0.1% PLB767(2017)177

[arXiv:1806.01642]

Π.

Π

Π

Κ⁰s

 K^0

 π_{tag}

 A^{CP} in $D^0 \rightarrow K_s^0 K_s^0$

A^{raw} extracted with a fit to $\Delta m = m(D^*) - m(D^0)$ distribution. **Total yields: 1067 ± 41**

Consistent with no-CPV hypothesis and previous results. Main systematic uncertainty

arises from fit model choice.

A^{CP} in $D^0 \rightarrow h^+h^-\mu^+\mu^-$

[LHCb-PAPER-2018-020] (in preparation)

- First observation of the rarest charm decays, agreement with SM PRL 119 (2017) 181805
- Now measured angular and CP asymmetries on data samples of 2011-2016 (5 fb⁻¹)
- Asymmetries sensitive to SD in full range due to SD-LD interference
 - negligible SM contribution with current precision
 - O(few %) predictions for some NP models
 JHEP 1304 135 (2013), PRD 87 054026 (2013)
- Asymmetries compatible with zero, i.e. with SM prediction
- No dependence on dimuon mass

Preliminary results

 $D^0 \to \pi^+ \pi^- \mu^- \mu^+$: $A_{CP} = (4.9 \pm 3.8 \pm 0.7)\%$

 $D^0 \to K^+ K^- \mu^- \mu^+$: $A_{CP} = (0 \pm 11 \pm 2)\%$

Mixing and indirect CPV

Mass eigenstates linear combination of flavor eigenstates

 $|D_{1,2}
angle = p|D^0
angle \pm q|\overline{D}{}^0
angle \longrightarrow$ Mixing

$$x \equiv \Delta m / \Gamma$$
$$y \equiv \Delta \Gamma / 2 \Gamma$$

Experimental status

Giulia Tuci, 19/06/2018

Charm mixing and CPV

Mixing parameters and search for CPV in $D^0 \rightarrow K^+\pi^-$ [PRD 97(2018) 031101]

- Data sample: 5fb⁻¹ (2011-2016)
- Used tagged $D^0 \rightarrow K^+\pi^-$ decays
- ♦ Measured the time dependent ratio of WS D⁰→ K⁺π⁻ and RS D⁰→ K⁻π⁺ → Dominated by CF amplitude

$$R(t) = \frac{N(D^0 \to K^+ \pi^-)}{N(D^0 \to K^- \pi^+)}$$

$$D^{0}$$

$$(V_{cd} * V_{us})$$

$$\pi^{-}K^{+}$$
Mix
$$CF$$

$$D^{0}$$

$$R(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

 $\begin{aligned} x' &\equiv x \cos \delta + y \sin \delta \\ y' &\equiv y \cos \delta - x \sin \delta \end{aligned}$

- Approximation for x,y<<1</p>
- τ is the average D⁰ lifetime
- \bullet R_D is the ratio of suppressed to favored decay rates
- δ is the strong-phase difference between suppressed and favored amplitudes

Giulia Tuci, 19/06/2018

Mixing parameters and search for CPV in $D^0 \rightarrow K^+\pi^-$ [PRD 97(2018) 031101]

- Data sample: 5fb⁻¹ (2011-2016)
- Used tagged $D^0 \rightarrow K^+\pi^-$ decays
- ♦ Measured the time dependent ratio of WS D⁰→ K⁺π⁻ and RS D⁰→ K⁻π⁺ → Dominated by CF amplitude

$$R(t) = \frac{N(D^0 \to K^+ \pi^-)}{N(D^0 \to K^- \pi^+)}$$

$$R_D^{\pm}(t) = R_D^{\pm} + \sqrt{R_D^{\pm}} \ y'^{\pm}t + \frac{(x'^{\pm})^2 + (y'^{\pm})^2}{4} \ t^2$$

Initial D⁰/D
0

 $R_D^+ \neq R_D^-$ → Direct CPV x'⁺ ≠ x'⁻ (y'⁺ ≠ y'⁻) → Indirect CPV

Mixing parameters and search for CPV in $D^0 \rightarrow K^+\pi^-$ [PRD 97(2018) 031101]

- Cuts applied to suppress problematic backgrounds, as:
 - 'Ghost' pions from mismatched track segments before and after the

magnet

- Possible peak in ∆m distribution
- Wrong charge 50% of time: $RS \rightarrow WS$ migration
- ➤ Backgrounds from mis-ID of D⁰ daughters
- Contamination from secondary decays: the D* is not coming form

the primary vertex, but from a b-hadron decay

Mixing parameters and search for CPV in $D^0{\longrightarrow}~K^{*}\pi^{-}$

Results

- Fitted efficiency-corrected data to extract
 (x'[±],y'[±],R[±]_D) under three different hypotheses
- Main systematic uncertainty: residual secondary decays in the final sample

Mixing parameters and search for CPV in $D^0{\longrightarrow}~K^{*}\pi^{-}$

Results

- Fitted efficiency-corrected data to extract * $(x'^{\pm}, y'^{\pm}, R^{\pm}_{D})$ under three different hypotheses
- Main systematic uncertainty: residual * secondary decays in the final sample

$$A_{D} = \frac{R_{D}^{+} - R_{D}^{-}}{R_{D}^{+} + R_{D}^{-}} = (-0.1 \pm 8.1(stat) \pm 4.2(syst)) \times 10^{-3}$$

$$\uparrow$$
Direct CPV

x10⁻³

Parameter

 R_D

 y'^+

 $(x'^+)^2$

 $(x'^{-})^{2}$

Direct and indirect CPV

Value

 $3.454 \pm 0.040 \pm 0.020$

 $5.01 \pm 0.64 \pm 0.38$

 $0.061 \pm 0.032 \pm 0.019$

 $3.454 \pm 0.040 \pm 0.020$

 $5.54 \pm 0.64 \pm 0.38$

 $0.016 \pm 0.033 \pm 0.020$

 $x^{\prime 2}$

Giulia Tuci, 19/06/2018

Parameter

 R_D^+

 R_D^-

(x')

 $(x'^+)^2$

Charm mixing and CPV

 $0.016 \pm 0.026 \pm 0.016$

 $0.039 \pm 0.023 \pm 0.014$

Mixing parameters and search for CPV in $D^0{\longrightarrow}~K^{*}\pi^{-}$

Results

6

6

 $R^{+}[10^{-3}]$

(a)

(b)

- Fitted efficiency-corrected data to extract
 (x'[±],y'[±],R[±]_D) under three different hypotheses
- Main systematic uncertainty: residual secondary decays in the final sample

Giulia Tuci, 19/06/2018

Charm mixing and CPV

[PRD 97(2018) 031101]

LHCb

Conclusion

Reached unprecedented precision on $D^0-\overline{D}^0$ mixing parameters

> $y' \rightarrow 5 \times 10^{-4}$ $x'^2 \rightarrow 3 \times 10^{-5}$ (still compatible with 0 within uncertainty)

- The search for CP violation in charm decays continues!
- With growing data samples LHCb is reaching the precision to observe CP
 violation as expected by SM
- New results from Run1 and Run2 data samples are coming
- Stay tuned!

Backup slides

Giulia Tuci, 19/06/2018

Charm mixing and CPV

$A^{CP} \text{ in } D^0 {\longrightarrow} K_S^{\ 0} K_S^{\ 0}$

[arXiv:1806.01642]

- A^{raw} extracted with a fit to $\Delta m = m(D^*) m(D^0)$ distribution
- Peaking background reduced with cut based selection, e.g.
 - > $D^0 \rightarrow K_s^0 \pi^+ \pi^-$, reduced performing selections on m(K_s^0) and flight distance

- Combinatorial background reduced using kNN classifier
- Results on LL and LD sample and on the two separate magnet polarities compatible within 2σ

Giulia Tuci, 19/06/2018