

Heavy Quarkonia: the Beauty and the Beasts

George Rupp
 CeFEMA, Instituto Superior Técnico, Lisbon

Work with Eef van Beveren, Marco Cardoso, Susana Coito
I. Introduction: proliferation of charmonium-like states
II. Why $\chi_{\mathrm{c} 1}(3872)$ is so unique
III. Modelling non-resonant $\psi(4260), \psi(4660), \Upsilon(10580)$
IV. Conclusions
I. Introduction: proliferation of charmonium-like states

- Since 2004 there has been a steep increase in mostly hidden-charm states listed by the PDG, starting with $\mathbf{X (3 8 7 2)}$ now designated $\chi_{\mathrm{c} 1}$ (3872).
- Charged charmonium-like states appeared in the PDG in 2010 and charged bottomonium like states in 2012.
- In the 2018 PDG edition a state with possibly exotic $J^{P C}=0^{--}$ called $R_{c 0}(4240)$ has been included.
- Several states changed their masses and names over the years, and a few states even disappeared.
- The interpretation of several "XYZ" states is hotly disputed, ranging from tetraquarks, via hadronic molecules, to non-resonant enhancements due to triangle singularities. For a short review, see e.g. X. Liu, D.-Y. Chen, and T. Matsuki, JPS Conf. Proc. 17 (2017) 111004.
- $\chi_{c 1}(3872)$ maintains its unique position of a very well determined charmonium-like state just below or even on top of its lowest OZIallowed hadronic decay mode.

Charmonium

2002:
eta(c)(1S) J/psi(1S) chi(c0)(1P) chi(c1)(1P) h(c)(1P) chi(c2)(1P) eta(c)(2S) psi(2S) psi(3770) psi(3836) psi(4040) psi(4160) psi(4415)

2004:
eta(c)(1S) J/psi(1S) chi(c0)(1P) chi(c1)(1P) h(c)(1P) chi(c2)(1P) eta(c)(2S) psi(2S) psi(3770) psi(3836) X(3872) psi(4040) psi(4160) psi(4415)

2006:
eta(c)(1S) J/psi(1S) chi(c0)(1P) chi(c1)(1P) h(c)(1P) chi(c2)(1P) eta(c)(2S) psi(2S) psi(3770) (psi(3836)) X(3872) chi(c2)(2P) X(3940) psi(4040) psi(4160) Y(4260) psi(4415)

2008:
eta(c)(1S) J/psi(1S) chi(c0)(1P) chi(c1)(1P) h(c)(1P) chi(c2)(1P) eta(c)(2S) psi(2S) psi(3770) X(3872)
chi(c2)(2P) X(3940) X(3945) psi(4040) psi(4160) X(4260) $X(4360) ~ p s i(4415)$

2010:
eta(c)(1S) J/psi(1S) chi(c0)(1P) chi(c1)(1P) h(c)(1P) chi(c2)(1P) eta(c)(2S) psi(2S) psi(3770) X(3872)
chi(c2)(2P) X(3940) X(3945) psi(4040) X(4050)+- X(4140)
psi(4160) X(4160) X(4250)+- X(4260) X(4350) X(4360)
psi(4415) X(4430)+- X(4660)
2012:
eta(c)(1S) J/psi(1S) chi(c0)(1P) chi(c1)(1P) h(c)(1P) chi(c2)(1P) eta(c)(2S) psi(2S) psi(3770) X(3872) X(3915) chi(c2)(2P) X(3940) (X(3945)) psi(4040) X(4050)+$X(4140)$ psi(4160) X(4160) X(4250)+-X(4260) X(4350) X(4360) psi(4415) X(4430)+- X(4660)

2014:
eta(c)(1S) J/psi(1S) chi(c0)(1P) chi(c1)(1P) h(c)(1P) chi(c2)(1P) eta(c)(2S) psi(2S) psi(3770) X(3823) X(3872) $X(3900)+-X(3900) 0 \times(3915)$ chi(c0)(2P) chi(c2)(2P) X(3940) X(4020)+- psi(4040) X(4050)+-X(4140) psi(4160) X(4160) X(4250)+- X(4260) X(4350) X(4360) psi(4415) $X(4430)+-X(4660)$

2016:
eta(c)(1S) J/psi(1S) chi(c0)(1P) chi(c1)(1P) h(c)(1P) chi(c2)(1P) eta(c)(2S) psi(2S) psi(3770) psi(3823) X(3872) X(3900)+- (X(3900)0) X(3915) (chi(c0)(2P)) chi(c2)(2P)
X(3940) X(4020)+- psi(4040) X(4050)+- X(4055)+-
X(4140) psi(4160) X(4160) X(4200)+- X(4230) X(4240)+-
X(4250) +- X(4260) X(4350) X(4360) psi(4415) X(4430)+-
X(4660)
2018:
eta(c)(1S) J/psi(1S) chi(c0)(1P) chi(c1)(1P) h(c)(1P) chi(c2)(1P) eta(c)(2S) psi(2S) psi(3770) psi(2)(3823) chi(c0)(3860) chi(c1)(3872) Z(c)(3900) X(3915) chi(c2)(3930) X(3940) X(4020)+- psi(4040) X(4050)+-X(4055)+- chi(c1)(4140) psi(4160) X(4160) Z(c)(4200) psi(4230) R(c0)(4240) X(4250)+- psi(4260) chi(c1)(4274) X(4350) psi(4360) psi(4390) psi(4415) Z(c)(4430) chi(c0)(4500) psi(4660) chi(c0)(4700)

Bottomonium

2002:
eta(b)(1S) Upsilon(1S) chi(b0)(1P) chi(b1)(1P) chi(b2)(1P)
Upsilon(2S) chi(b0)(2P) chi(b1)(2P) chi(b2)(2P)
Upsilon(3S) Upsilon(4S) Upsilon(10860) Upsilon(11020)
2004:
eta(b)(1S) Upsilon(1S) chi(b0)(1P) chi(b1)(1P) chi(b2)(1P)
Upsilon(2S) chi(b0)(2P) chi(b1)(2P) chi(b2)(2P)
Upsilon(3S) Upsilon(4S) Upsilon(10860) Upsilon(11020)
2006:
eta(b)(1S) Upsilon(1S) chi(b0)(1P) chi(b1)(1P) chi(b2)(1P)
Upsilon(2S) Upsilon(1D) chi(b0)(2P) chi(b1)(2P)
chi(b2)(2P) Upsilon(3S) Upsilon(4S) Upsilon(10860)
Upsilon(11020)
2008:
eta(b)(1S) Upsilon(1S) chi(b0)(1P) chi(b1)(1P) chi(b2)(1P)
Upsilon(2S) Upsilon(1D) chi(b0)(2P) chi(b1)(2P)
chi(b2)(2P) Upsilon(3S) Upsilon(4S) Upsilon(10860) Upsilon(11020)

2010:
eta(b)(1S) Upsilon(1S) chi(b0)(1P) chi(b1)(1P) chi(b2)(1P)
Upsilon(2S) Upsilon(1D) chi(b0)(2P) chi(b1)(2P)
chi(b2)(2P) Upsilon(3S) Upsilon(4S) Upsilon(10860)
Upsilon(11020)
2012:
eta(b)(1S) Upsilon(1S) chi(b0)(1P) chi(b1)(1P) h(b)(1P) chi(b2)(1P) Upsilon(2S) Upsilon(1D) chi(b0)(2P) chi(b1)(2P) h(b)(2P) chi(b2)(2P) Upsilon(3S) chi(b)(3P) Upsilon(4S) X(10610)+- X(10650)+- Upsilon(10860) Upsilon(11020)
2014:
eta(b)(1S) Upsilon(1S) chi(b0)(1P) chi(b1)(1P) h(b)(1P)
chi(b2)(1P) eta(b)(2S) Upsilon(2S) Upsilon(1D) chi(b0)(2P)
chi(b1)(2P) h(b)(2P) chi(b2)(2P) Upsilon(3S) chi(b)(3P)
Upsilon(4S) X(10610)+- X(10610) $0 \times(10650)+-$
Upsilon(10860) Upsilon(11020)

2016:
eta(b)(1S) Upsilon(1S) chi(b0)(1P) chi(b1)(1P) h(b)(1P)
chi(b2)(1P) eta(b)(2S) Upsilon(2S) Upsilon(1D) chi(b0)(2P)
chi(b1)(2P) h(b)(2P) chi(b2)(2P) Upsilon(3S) chi(b)(3P)
Upsilon(4S) X(10610)+- X(10610) $0 \times(10650)+-$
Upsilon(10860) Upsilon(11020)
2018:
eta(b)(1S) Upsilon(1S) chi(b0)(1P) chi(b1)(1P) h(b)(1P)
chi(b2)(1P) eta(b)(2S) Upsilon(2S) Upsilon(2)(1D)
chi(b0)(2P) chi(b1)(2P) h(b)(2P) chi(b2)(2P) Upsilon(3S)
chi(b)(3P) Upsilon(4S) Z(b)(10610) Z(b)(10650)
Upsilon(10860) Upsilon(11020)
II. Why $\chi_{\mathrm{c} 1}(3872)$ is so unique

- PDG-2018 average mass: $\mathbf{m}_{\chi_{\mathrm{c} 1}(3872)}=3871.69 \pm \mathbf{0 . 1 7} \mathbf{~ M e V}$. Average $\mathrm{D}^{0} \overline{\mathrm{D}}^{\star 0}$ threshold: $\mathbf{m}_{\mathrm{D}^{0} \overline{\mathrm{D}}^{\star 0}}=3871.696 \pm \mathbf{0 . 0 8} \mathbf{~ M e V}$.
- This mass difference has been shrinking over the years and is now probably smaller than the $\mathbf{D}^{\star 0}$ width.
- The other hadronic decay modes $\omega \mathrm{J} / \psi$ and $\rho^{0} \mathrm{~J} / \psi$ are both OZI-suppressed, the latter also isospin-breaking. Therefore, the $\chi_{\mathrm{c} 1}(\mathbf{3 8 7 2})$ width is very small.
- The quantum numbers $\mathbf{I}^{\mathrm{G}} \mathbf{J P C}^{\mathrm{PC}}=\mathbf{0}^{+} \mathbf{1}^{++}$have been firmly established.
- For many purposes, $\chi_{\mathrm{c} 1}(\mathbf{3 8 7 2})$ can be treated as a (quasi-)bound state, allowing very detailed model calculations.
- Future experiments (e.g. PANDA) will be able to pin down $\chi_{\mathbf{c 1}}(3872)$'s properties with unprecedented precision, such as electromagnetic transitions.
- $\chi_{\mathbf{c 1}} \mathbf{(3 8 7 2)}$ is an ideal laboratory for both experimentalists and theorists to improve their methods of analysis.

Wave function of $\chi_{\mathrm{c} 1}\left(\mathbf{3 8 7 2)}\right.$ as a unitarised $2^{3} P_{1} c \bar{c}$ state M. Cardoso, G. Rupp, and E. van Beveren

Eur. Phys. J. C 75 (2015) 26 [arXiv:1411.1654 [hep-ph]]

$\chi_{\mathrm{c} 1}(\mathbf{3 8 7 2})$ as an intrinsic or a dynamical unitarised $\mathbf{2 ~}^{3} \mathbf{P}_{\mathbf{1}} \mathbf{c} \overline{\mathbf{c}}$ state S. Coito, G. Rupp, and E. van Beveren

Eur. Phys. J. C 73 (2013) 2351 [arXiv:1212.0648 [hep-ph]] $\operatorname{Re} E(\mathrm{GeV})$

M. Padmanath, C. B.Lang, and S. Prelovsek Phys. Rev. D 92 (2015) 034501

We perform a lattice study of charmonium-like mesons with $J^{\mathrm{PC}}=1^{++}$and three quark contents $\bar{c} c \bar{d} u, \bar{c} c(\bar{u} u+\bar{d} d)$ and $\bar{c} c \bar{s} s$, where the later two can mix with $\bar{c} c$. This simulation with $N_{f}=2$ and $m_{\pi} \simeq 266 \mathrm{MeV}$ aims at the possible signatures of four-quark exotic states. We utilize a large basis of $\bar{c} c$, two-meson and diquark-antidiquark interpolating fields, with diquarks in both antitriplet and sextet color representations. A lattice candidate for $X(3872)$ with $I=0$ is observed very close to the experimental state only if both $\bar{c} c$ and $D \bar{D}^{*}$ interpolators are included; the candidate is not found if diquark-antidiquark and $D \bar{D}^{*}$ are used in the absence of $\bar{c} c$. No candidate for neutral or charged $X(3872)$, or any other exotic candidates are found in the $I=1$ channel. We also do not find signatures of exotic $\bar{c} c \bar{s} s$ candidates below 4.2 GeV , such as $Y(4140)$. Possible physics and methodology related reasons for that are discussed. Along the way, we present the diquark-antidiquark operators as linear combinations of the two-meson operators via the Fierz transformations.
... "In the physical world with $\mathbf{N}_{\mathbf{c}}=\mathbf{3}$, it is argued that tetraquarks could exist at subleading orders [46] of large $\mathbf{N}_{\mathbf{c}}$ QCD. However, in the presence of the leading order two-meson terms, one should take caution in interpreting the nature of the levels purely based on their overlap factors onto various four-quark interpolators." ...

TABLE III. Mass of $X(3872)$ with respect to $m_{\text {s.a. }}$ and the $D_{0} \bar{D}_{0}^{*}$ threshold. Our estimates are from the correlated fits to the corresponding eigenvalues using single exponential fit form with and without diquark-antidiquark operators. Results from previous lattice QCD simulations [17,18] and experiment are also presented.

$X(3872)$	$m_{X}-m_{\text {s.a. }}$	$m_{X}-m_{D_{0}}-m_{D_{0}^{*}}$
Lat.	$816(15)$	$-8(15)$
Lat. $-O^{4 q}$	$815(8)$	$-9(8)$
LQCD [17]	$815(7)$	$-11(7)$
LQCD [18]	\cdots	$-13(6)$
Experiment	$803(1)$	$-0.11(21)$

... "These results are in agreement with a possible interpretation of $\mathbf{X}(\mathbf{3 8 7 2})$, where its properties are due to the accidental alignment of a c $\overline{\mathbf{c}}$ state with the $\mathbf{D}^{0} \overline{\mathbf{D}}^{\star 0}$ threshold [49,50], but we cannot rule out other options."

$\psi(4260)$ decay modes in the PDG-2018 Meson Listings
 M. Tanabashi al. (Particle Data Group)
 Phys. Rev. D 98 (2018) 030001

	Mode	Fraction $\left(\Gamma_{i}\right.$
Γ_{1}	$e^{+} e^{-}$	
Γ_{2}	$J / \psi \pi^{+} \pi^{-}$	seen
Γ_{3}	$J / \psi f_{0}(980), f_{0}(980) \rightarrow \pi^{+} \pi^{-}$	seen
Γ_{4}	$Z_{c}(3900)^{ \pm} \pi^{\mp}, Z_{c}^{ \pm} \rightarrow J / \psi \pi^{ \pm}$	seen
Γ_{5}	$J / \psi \pi^{0} \pi^{0}$	seen
Γ_{6}	$J / \psi K^{+} K^{-}$	seen
Γ_{7}	$J / \psi K_{S}^{0} K_{S}^{0}$	not seen
Γ_{8}	$J / \psi \eta$	not seen
Γ_{9}	$J / \psi \pi^{0}$	not seen
Γ_{10}	$J / \psi \eta^{\prime}$	not seen
Γ_{11}	$J / \psi \pi^{+} \pi^{-} \pi^{0}$	not seen
Γ_{12}	$J / \psi \eta \pi^{0}$	not seen
Γ_{13}	$J / \psi \eta \eta$	not seen
Γ_{14}	$\psi(2 S) \pi^{+} \pi^{-}$	not seen
Γ_{15}	$\psi(2 S) \eta$	not seen
Γ_{16}	$\chi c 0 \omega$	not seen
Γ_{17}	$\chi c 1 \pi^{+} \pi^{-} \pi^{0}$	not seen
Γ_{18}	$\chi c 2 \pi^{+} \pi^{-} \pi^{0}$	not seen
Γ_{19}	$h_{c}(1 P) \pi^{+} \pi^{-}$	not seen
Γ_{20}	$\phi \pi^{+} \pi^{-}$	not seen
Γ_{21}	$\phi f_{0}(980) \rightarrow \phi \pi^{+} \pi^{-}$	not seen
Γ_{22}	$D \bar{D}$	not seen
Γ_{23}	$D^{0} \bar{D}^{0}$	not seen
Γ_{24}	$D^{+} D^{-}$	not seen
Γ_{25}	$D^{*} \bar{D}+\mathrm{c} . \mathrm{c}$.	not seen
Γ_{26}	$D^{*}(2007)^{0} \bar{D}^{0}+$ c.c.	not seen
Γ_{27}	$D^{*}(2010)^{+} D^{-}+\mathrm{c.c}$.	not seen
Γ_{28}	$D^{*} \bar{D}^{*}$	not seen
Γ_{29}	$D^{*}(2007)^{0} \bar{D}^{*}(2007)^{0}$	not seen
Γ_{30}	$D^{*}(2010)^{+} D^{*}(2010)^{-}$	not seen
Γ_{31}	$D \bar{D} \pi+c . c$.	

Γ_{32}	$D^{0} D^{-} \pi^{+}+$c.c. (excl.	not seen
	$D^{*}(2007)^{0} \bar{D}^{* 0}+$ c.c.,	
Γ_{33}	$D^{*} \bar{D}^{*} \pi+$ c.c. $\left(\right.$ excl. $\left.D^{*} \overline{D^{*}}\right)$	not seen
Γ_{34}^{*}	$D^{0} D^{*-} \pi^{+}+$c.c. $($excl.	not seen
	$\left.D^{*}(2010)^{+} D^{*}(2010)^{-}\right)$	
Γ_{35}	$D^{0} D^{*}(2010)^{-} \pi^{+}+$c.c.	not seen
Γ_{36}	$D^{*} \bar{D}^{*} \pi$	not seen
Γ_{37}	$D_{s}^{+} D_{s}^{-}$	not seen
Γ_{38}	$D_{s}^{*+} D_{s}^{-}+$c.c.	not seen
Γ_{39}	$D_{s}^{*+} D_{s}^{*-}$	not seen
Γ_{40}	$p \bar{p}$	not seen
Γ_{41}	$p \bar{p} \pi^{0}$	not seen
Γ_{42}	$K_{S}^{0} K^{ \pm} \pi^{\mp}$	not seen
Γ_{43}	$K^{+} K^{-} \pi^{0}$	not seen

Radiative decays

$\Gamma_{44} \eta_{c}(1 S) \gamma$
$\Gamma_{45} \chi_{c 1} \gamma$
$\Gamma_{46} \chi_{c 2} \gamma$
$\Gamma_{47} \chi_{c 1}(3872) \gamma$
possibly not seen not seen seen
$\psi(4260)$ as a non-resonant $\mathbf{c} \bar{c}$ structure from inelasticities
E. van Beveren, G. Rupp, and J. Segovia Phys. Rev. Lett. 105 (2010) 102001 [arXiv:1005.1010 [hep-ph]]

$\psi(\mathbf{4 6 6 0})$ as a $\boldsymbol{\Lambda}_{\mathrm{c}} \overline{\boldsymbol{\Lambda}}_{\mathrm{c}}$ threshold enhancement in BABAR data
E. van Beveren, X. Liu, R. Coimbra, and G. Rupp

Europhys. Lett. 85 (2009) 61002 [arXiv:0809.1151 [hep-ph]]

Alternative vector $\mathbf{b} \overline{\mathbf{b}}$ spectrum from threshold enhancements
E. van Beveren and G. Rupp, arXiv:0910.0967 [hep-ph] Also see: EvB \& GR, Phys. Rev. D 80 (2009) 074001

IV. Conclusions

- A modern lattice calculation seems to confirm $\chi_{\mathrm{c} 1}(\mathbf{3 8 7 2})$ as an axial-vector charmonium state with a sizeable $\mathbf{D}^{0} \overline{\mathbf{D}}^{\star 0}$ component. Both $\mathbf{c} \overline{\mathbf{c}}$ and $\mathbf{D}^{0} \overline{\mathbf{D}}^{\star 0}$ turn out to be crucial for its existence, in contrast with a largely negligible diquark-antidiquark component.
- As the (putative) $\chi_{\mathbf{b} \mathbf{1}} \mathbf{(3 P)}$ state lies way below the $\mathbf{B} \overline{\mathbf{B}}^{\star}$ threshold, the $\chi_{\mathrm{c} 1}(\mathbf{3 8 7 2)}$ case appears to be unique as a lucky accident.
- The large unitarisation effects found for $\chi_{\mathbf{c 1}}(\mathbf{3 8 7 2)}$ should be a warning to model builders who treat new charmonium-like and bottomonium-like states as static tetraquarks or molecules.
- Experimentalists should be very careful in trying to distinguish between genuine resonance and possible non-resonant threshold effects. They should also not make assignments of new heavy quarkonium states above open-charm/bottom threshold based on predictions of static quark models.
- In my opinion, the PDG people should be more selective in including new charmonium-like states in the listings, lest the heavyquarkonium panorama become increasingly confusing.

