

Recent upgrades of the simulation, geometry and reconstruction modules of the ANTS2 toolkit

A. Morozov, V. Solovov, R. Martins, J. Marcos and V. Chepel

LIP-Coimbra, Portugal

2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, Sydney

Position Sensitive Scintillation Detectors

ANTS2 highlights

ANTS2 toolkit was created to assist at all stages of PSSD detector development, including:

- conceptual design
- detector optimization
- development of event processing algorithms
- detector calibration
- processing of experimental data (real-time capability)

ANTS2 highlights

Scintillation event reconstruction (position + energy)

- Center of gravity
- Statistical algorithms
 - C++ (fast) and script (highly customizable) based implementations
 - Contracting grids on GPUs (up to ~10⁶ events/s)
- Artificial neural networks
- kNN-based reconstruction

Detector response reconstruction

- B-spline and analytic parameterization of sensor response
- Grouping of the sensor to take advantage of the array symmetry
- Iterative reconstruction of the detector response
- A set of tools for calculation of relative sensor response

ANTS2 highlights

Simulations

- 3D, custom detector geometry
- Generation and tracking of gamma rays, neutrons and positive ions
- Primary and secondary scintillation
- Time- and wavelength-resolved tracking of optical photons
- Photon scattering, wavelength shifters
- Signal formation for PMTs and SiPMs

Experimental data processing

- Import and preprocessing of experimental data
- Event discrimination tools (noise and multiple event rejection)

Large collection of tools for characterization of PSSD performance

Detector response reconstruction

Light Response Functions (LRF) are used to describe the response of PSSD to the scintillation light.

LRF gives the average signal of a sensor vs the light source position.

LRF parameterization schemes in ANTS2:

Cubic B-splines:

1D (axial symmetry), 2D (XY or axial+Z), and 3D (XYZ or sets of XY LRFs)

- Analytic functions (defined using scripts)
- Custom C++ code through plug-in interface
- Composite LRFs (LRF is a sum of several components)

It is possible to group light sensors and use a common LRF profile for several sensors to benefit from the symmetry of the sensor array.

New features in the B-spline library: constraints on the LRF profile during fitting, e.g., non-increasing function, always positive, and flat-top.

Iterative response reconstruction

ANTS2 offers tools for *iterative response reconstruction:* LRFs can be reconstructed from flood field calibration data without known true event positions!

Reconstruction tests after 0, 1, 12 and 40 iterations

Feasibility demonstrated for:

- compact camera: Phys. Med. Biol. 62 (2017) 3619
- medical gamma camera: Phys. Med. Biol. 60 (2015) 4169
- GSPC neutron detector: 2012 IEEE NSS/MIC N21-6
- dual phase Xe scintillation detectors: IEEE Trans. Nucl. Sci. 59 (2012) 3286

Simulations: Geometry and 3D navigation

TGeoManager from CERN ROOT stores the detector geometry and is used for tracking

- Tens of elementary shapes + composite volumes
- 3D navigator with multithreading
- Access to a large collection of visualization tools
- Geometry can be exchanged with Geant4 using GDML files

NTS2 model for simulation of SPECT

Detector geometry

- Detector geometry is defined in a tree-like structure
- Stored in JSON configuration file
- Can be created and modified through
 - Interactive GUI
 - Script (Python, JavaScript)

Wond nee Duminy PMs Test GDM							
Tree of geometry objects							
World							
TopLightGuide							
Guide_L2							
TopSpace							
 TopGrid 				Grid bulk			
GridElement_TopGrid				_			
New_XR5	E	Name:	GateGrid	Mat	terial: [LiqiudXe	•
New_WT5		TGeoPolyg	on(12, 360, 0.026	, 0, 236.5, 0	, 236.5)	
AnodeMesh							Help
GridElement_AnodeMesh							
 Composite_MP7 CompositeSet_Composite_MP7 		X:	0	mm Phi:	0		•
		Y:	0	mm Theta:	0		•
- New_LZ1		Z:	241	mm Psi:	0		•
New_IH8							
New_RV3 New_JG5							
SecScint							
PrScint							
▼ GateGrid							
 GridElement_GateGrid 			ofirm changes		Can	cel changes	
New_JA4			and ges		Cun	icer entinges	,

Tools are provided for simple handling of:

- Arrays of objects Stacks of objects
- Compound lightguides Grids/meshes of wires

Photon tracing

- Reflection / refraction (Fresnel equations, Snell's law)
- Absorption (+ reemission with wavelength shifting)
- Rayleigh scattering
- Custom rules at the boundaries of geometry volumes

The custom rules:

- defined for a pair of materials (*from* and *to*)
- in the simplest case include the probabilities of absorption, specular reflection and Lambertian scattering (can be wavelength-resolved)
- advanced models describe light scattering on rough surfaces, dielectric-metal interface and wavelength shifters
- custom models can now be defined with a script!

Photon tracing with wavelength shifting fibers

Sensor signal generation

Signal generation for PMTs and SiPMs taking into account:

- Photon detection efficiency
 - optionally vs wavelength, angle of incidence, and position
- the number of SiPM microcells and the dark count rate
- Signal readout properties
 - single photoelectron spectrum
 - electronic noise
 - signal digitalization properties

Two models were added for simulation of SiPM optical crosstalk:

- Statistical model
- Four-neighbor pixel model

The computation algorithm for the contribution of the dark counts to the signal was improved by taking into account timing properties.

ANTS2 simulation: distribution of signals from a SiPM sensor, showing the contributions from 0 to 5 photoelectrons.

Neutrons

Targeting thermal neutron detectors:

- New material system with configurable isotope composition was implemented
- ANTS2 can now simulate neutron interactions:
 - absorption (including capture + emission of fission fragments)
 - elastic scattering
 - Gas model
 - Coherent elastic scattering on polycrystalline materials using NCrystal library

Basic validation study shows good match of the simulated and experimental detection efficiencies.

Semi-automatic optimization

A multi-parameter optimization is often required during detector development.

The brute-force approach (can be very time-consuming!)

- Define a grid of parameter values
- Perform simulation + analysis for each grid node
- Find the best node

ANTS2 offers a more efficient alternative:

In script, define a minimization function. This function will be called by the minimizer, running, e.g. Simplex algorithm. On each call from the minimizer the function:

- modifies the detector geometry
- runs a simulation providing a set of events
- reconstructs the events
- performs analysis and returns the goodness value to the minimizer.

Semi-automatic optimization

¹⁰B-RPC thermal neutron detector with 10 RPCs: Optimize 5 neutron converter thicknesses to

- equalize as much as possible the count rate of all RPCs
- keep the total detection efficiency as high as possible

Goodness parameter

Scripting

ANTS2 offers scripting in two programming languages:

- JavaScript
 - multithread script evaluation is supported
- Python
 - uses the system Python interpreter, so all Python modules installed on the system are accessible in ANTS2 via import directive.

Among many other tasks, scripts can:

- read and modify the detector configuration
- run simulation and reconstruction
- read, modify and filter event data
- write and read ROOT trees,
- create and draw histograms and graphs
- provide interactivity through access to the GUI

Scripts can be executed

- from the GUI (next slide)
- in batch mode
- through the WebSocket interface of the ANTS2 server

Scripting

3	ANTS2 script			and Charles		×		
Tabs Find Font View								
Associated file: not saved								
30	n-10-Reconstruction2 new_3 AntsFarm-10-Reconstruction4 Photon_S2 ForSofia new_2		▶	Unit.Function	Key	Value or typ 🔺		
	11	-	~	▲ ▷ core	DetectorConfig	obj		
	12 var pede = Π			▷ math	DummyPMs	array[0]		
	13 var nedeCounter = 0		▷ threads	Electronics	obj			
	for (vor i=0; icnumPme; i++)			▷ config	FixedWorldSizes	obj		
	14 IOI (val 1-0, 1<1000 r 115, 1++)			⊳ geo	IndividualPMoverrides	obj		
	15 {		_	_ ⊳ mini	LoadExpDataConfig	obj		
	16 $pede[l] = 0$			▷ events =	 MaterialCollection 	obj 😑		
	17 pedeCounter[i] = 0			▷ sim	LogLog	false		
	18			▷ rec	 Materials 	array[7]		
	19 var MinDist2 = MinDist*MinDist			▷ Irf	Materials[0]	obj		
	20			▶ newLrf	 Materials[1] 	obj		
	for (ver iEvent=0; iEvent <numevents; ievent++)<="" th=""><th>1</th><th>2</th><th>► pms</th><th>*MaterialName</th><th>"Glass"</th></numevents;>	1	2	► pms	*MaterialName	"Glass"		
				▶ graph	BulkAbsorption	0		
	22 {			▷ hist	BulkAbsorption	array[0]		
	23 If (!events.IsReconstructedGoodEvent(iEvent)) continue			⁴ tree	ChemicalComp	00)		
	<pre>24 for (var iPM=0; iPM<numpms;)<="" ipm++="" pre=""></numpms;></pre>			tree.DeleteAllTrees()	Comments	25		
	25 {	-	tree.DeleteTree(TreeName)	ElDrift/John	2.5			
	26 var DistX2 = events.GetRho2(iEvent, int iPM)		tree.Draw(TreeName, what, cuts, opti	EIDTITUVEIO MatParticles	o 2000/121			
	27 var DistY2 = events GetRho2(iEvent_iPM)			tree.Draw(TreeName, what, cuts, opti	PrimScintDecay	array[1]		
	if (DistX2+DistX2 < MinDist2) continuo			tree Draw(TreeName, what, cuts, opti	PrimScintBaise	array[1]		
				tree Fill (TreeName, Array)	PrimScintSpectr	array[0]		
				tree FlushToFile(TreeName)	PrimScint Model	0		
	30 var Sig = events.GetPMsignal(iEvent, iPM)			tree GetAllTreeNames()	RayleighMEP	ő		
	31 if (Sig < MinSignal) continue;			tree GetBranch(TreeName, BranchNa	RayleighWave	500		
	32 if (Sig > MaxSignal) continue;			tree.GetBranch(TreeName, BranchNa	ReemissionProb	0		
	33				ReemissionPro	arrav[0]		
	34 pedeliPMI += Sig	-	-	+	•	E F		
		Þ	_	Find	Find			
	Help Load script Save as							
	Run script Config Examples Save							

Script window of ANTS2 showing the script text, method help and configuration explorer fields

ANTS2 Docker

ANTS2 Docker container is available (Linux OS + ANTS2 + all required libraries)

- Runs on Windows, Linux and Mac hosts
- Nearly native code performance
- Safety (strong isolation)
- User-friendly: The already built container can be downloaded from the Docker Hub

9981e60999f6:1 () - no/ ×	4	(3) - +
E → C O localhost:6901/vnc.html		ý 🗢 1
Yellsdorythict (s. rec. x Acrossed and a set a set and a		
W (a) (gottomser *) V (a) (gottomser *) V (b) (a) (gottomser *) V (b) (a) (gottomser *) V (b) (a) (gottomser *) W (b) (a) (gottomser *) Word metricitik (gottomser states array) (gottomser states array) Bond metricitik (gottomser states array) (gottomser states array) Lock CRT Advanced settings	700 500 500	

Desktop:

- Docker container: ANTS2 + XFCE desktop + VNC server
- Browser with HTML5 support: noVNC client

ANTS2 docker with the desktop opened in the Chrome browser

Networked/Distributed ANTS2

Server mode was implemented in which, over WebSocket protocol, ANTS2 can:

- Receive binary and text data (including the detector configuration)
- Receive and execute scripts
- Return the results

Distributed ANTS2:

- A dispatcher application, on a request from the master, starts a single-use ANTS2 server and gives the master contact info
- The master keeps the list of available servers and distributes the workload between them
- The results are returned to the master

Rate servers Reconstruct						
		Check stat	us of servers	Simula	te	Abort
•	V	slip	ws:// 192.168.3.165	: 12345 🚔 #Thr: 4 SF: 1.47	0%	
•	V	titan	ws:// 192.168.3.141	: 12345 🚔 #Thr: 4 SF: 1.47	0%	
0		iv	ws:// 192.168.6.6	: 1234 🍦 #Thr: 0/1 SF: 0.00		
•	1	B16-win	ws:// 192.168.2.76	: 1234 🌩 #Thr: 4 SF: 0.89	0%	Remove
•		Local	ws:// 127.0.0.1	: 1234 🗼 #Thr: 0/4 SF: 1.26		New
VTS2	server	dispatchers:				

ANTS2 GUI for distributed simulation /reconstruction

• Docker container with a lightweight ANTS2 server and a very small footprint dispatcher is available

Implementation

ANTS2 is written in C++, uses Qt framework and requires ROOT 5 or 6

Optional libraries:

EIGEN3:	fast LRF fitting
PythonQt +	
Python 2 or 3:	Python scripting
CUDA toolkit:	GPU-based statistical reconstruction
NCrystal:	elastic neutron scattering simulation
FANN:	ANN reconstruction
FLANN:	kNN reconstruction and event rejection

Open source and more information can be found at: https://github.com/andrmor/ANTS2 JINST 11 (2016) P04022 JINST 11 (2016) P09014

