Velocity and Charge Reconstruction with the Rich Detector of the AMS Experiment

F. Barao (LIP-IST, Lisbon)

J.Borges, L.Arruda, M.Pimenta, P.Goncalves, I.Peres, F.Carmo

Outline

- \checkmark AMS detector
- \checkmark Rich Detector
- \checkmark Photon pattern tracing
- \checkmark Velocity reconstruction
- \checkmark Charge reconstruction
- ✔ Conclusions

4th Workshop on RICH Detectors, NESTOR Institute-Pylos June 5-10, 2002

F.Barão (LIP/IST) / 1

Workshop on RICH Detectors June 9, 2002 (Pylos)

AMS2: Spectrometer Capabilities

Physics motivations

The study of secondary species such as Li, Be and B which result essentially from CNO spallation provides us information about propagation of cosmic-rays (CNO group) in galaxy (B/C)
 (Z > 2 abondance only ~ 1%)

 \diamondsuit The propagation history of the Helium nuclei can be probed measuring the ratio ${}^{3}He/{}^{4}He$

 ${}^{3}He$ is essentially secondary and comes from the spallation of ${}^{4}He$

▷ The measurement of the ratio ${}^{10}Be/{}^{9}Be$ give us information about confinement of cosmic rays in the Galactic volume and is sensitive to different propagation models $({}^{10}Be)$ $t_{1/2} \sim 1.5 \times 10^{6} yrs$

improve current Be isotopic measurements

- I done at relatively low energies
- rightarrow based in poor event statistics

RICH detector

The Ring Imaging Cerenkov of AMS is a proximity focusing detector with a low index radiator, a high reflectivity mirror and photomultiplier tubes.

- \Rightarrow velocity measurement
- $rac{\Deltaeta}{eta}=0.1\%$
- \Leftrightarrow charge measurement $Z \sim 25$
- ♀ redundancy on albedo rejection $\overline{He}/He \sim 10^{-9}$
- \Rightarrow e/p separation

Cerenkov radiation

a charged particle traveling in a medium with a velocity higher than the light speed radiates photons:

$$cos heta_c = rac{1}{eta n}$$

✓ Light Yield

the light yield increases with the radiator thickness (L), the charge (Z), the velocity (β) and refractive index (n):

 $n_{p.e} \propto Z^2 \; L \left(1 - rac{1}{eta^2 n^2}
ight) \int arepsilon dE$

✔ radiator

Silica Aerogel (n=1.030/n=1.050) 2-3cm thick aerogel tiles $11.5 \times 11.5 \times 1cm^3$ $N_{\gamma} \sim 50/cm$ (Z=1, $\beta \sim 1$)

✓ Rayleigh scattering $\frac{d\sigma}{d\Omega} \propto \frac{(1+\cos^2\theta_c)}{\lambda^4}$ directionality of cerenkov photons lost transparency decreases for UVs $\Lambda_{int} = \frac{\lambda^4}{C}$

> C=Clarity coeff. $0.0042\mu m^4/cm \ (n = 1.030)$ $0.0091\mu m^4/cm \ (n = 1.050)$

Detection Matrix

- ✔ Photomultipliers
 - \rightarrow matrix with around **700 PMT's**
 - → 4x4 multianode R7600-M16
 4.5 mm pitch
 - \rightarrow borosilicate glass window
 - ➡ spectral response 300-650 nm
 maximum at $\lambda = 420nm$
- ✔ Light Guides

Plexiglass (n=1.49) solid guides Effective pixel size $\sim 8 - 8.5 \ mm$

Photon pattern tracing

photon tracing includes

✓ emission at a reference point with an opening angle θ_c and at a given azimuthal angle φ

$$\overrightarrow{g}^{*}(\varphi; \theta_{c}) \xrightarrow{T(\theta; \phi)} \overrightarrow{g}(\varphi; \theta_{c}, \theta, \phi)$$

- \checkmark escaping from radiator
- \checkmark refracting at radiator boundary
- \checkmark reflecting on mirror
- \checkmark hitting detection plane

typical patterns for two radiators

- \checkmark for aerogel (n=1.030)
- \checkmark for NaF (n=1.34)

Workshop on RICH Detectors June 9, 2002 (Pylos)

(θ_c) reconstruction: A likelihood approach

- ✓ The AMS Tracker provides the **particle direction** (θ , ϕ) and **impact** point at the RICH radiator
- ✓ The **photon pattern** at the PMT matrix plane is derived as a function of the cerenkov angle (θ_c)
- ✓ The hits associated to the particle track are excluded
- ✓ The maximization of a likelihood function provides the best θ_c angle

 $P(heta_c) = \prod_{i=1}^{nhits} P_i\{r_i(arphi_i; heta_c)\}$

- $r_i \equiv$ closest distance to photon pattern
- $P_i \equiv$ probability of a hit belonging to photon pattern

θ_c reconstruction: probability function

noisy hits distribution essentially flat V PMT noise, scattering,...

$$P_{noise} = rac{b}{R} \sim 10^{-3} \ /cm$$

 $b \equiv$ photon background fraction per event $R \equiv$ active matrix dimension

pattern hits distribution essentially gaus-**V** sian

pixel size, radiator thickness, chromaticity,...

$$P_{signal} = (1-b) \frac{1}{\sigma \sqrt{2\pi}} \exp^{-\frac{1}{2} \left(\frac{r_i}{\sigma}\right)^2}$$

width: $\sigma \sim 0.5 \ cm$ (1)

width: $\sigma \sim 0.5 \ cm$

 \checkmark combined probability function

$$P_i = (1-b)g(r_i) + rac{b}{R}$$

θ_c reconstruction: event displays

Results: the Number of hits

a radiator thickness of 3 cm envisaged

Cerenkov angle resolution

The cerenkov angle:

$$cos heta_c = rac{1}{eta \ n}$$

The particle velocity uncertainty (per hit):

$$rac{\Deltaeta}{eta} = an heta_c \ \Delta heta_c$$

The cerenkov angle uncertainty:

$$\Delta heta_c \sim \cos^2 heta_c rac{\Delta d}{L}$$

 \Leftrightarrow the θ_c uncertainty deals with

\Box pixel size (granularity) $\sim 8.5 mm$	$\Delta d \sim rac{pixel}{\sqrt{12}}$	$\Rightarrow \Delta heta_c \sim 5 \ mrad$
\Box radiator thickness $2 - 3cm$	$\Delta d \sim rac{H~ an heta n heta_c}{\sqrt{12}}$	$\Rightarrow \Delta heta_c < 5 mrad$
□ chromaticity	$\Delta heta_c \sim rac{\Delta \; n}{\sqrt{2(n-1)}}$	$\Rightarrow \Delta heta_c < 5 mrad$

Cerenkov angle reconstrucion

for events with at least 3 hits

Workshop on RICH Detectors June 9, 2002 (Pylos)

Results : β resolution scaling

 the relative uncertainty on the velocity determination scales down with the number of hits

$\Delta\beta/\beta$: Resolution per hit

✓ It is possible to estimate the velocity resolution independently of the number of hits of every event

$$\left(rac{\Deltaeta}{eta}
ight)_{hit} = rac{\Deltaeta}{eta} imes \sqrt{N_{hits}}$$

RICH Prototype

A RICH prototype was built and submitted to cosmic events at the ISN (Grenoble)

96 PMT's

RICH Prototype

Prototype Data Analysis: an event

Data Selection event procedure

 Look for particle signal in PMT matrix (> 5 p.e)

✓ Compare position of particle cluster to track extrapolation and require events with a good matching $(\Delta_x, \Delta_y < 0.75cm)$

Prototype Data Analysis: Comparing DATA to MC

number of hits correlated with the photon pattern

Light Guides behave as expected

Cosmic muons velocity spectrum

Measured $\boldsymbol{\beta}$ on data and simulation

Velocity resolution from one hit

Charge (Z) reconstruction

✓ the number of Cerenkov radiated photons when a charged particle crosses a radiator path ΔL , depends on its charge Z

$$N \propto Z^2 \; \Delta L \; \left(1 - rac{1}{eta^2 n^2}
ight)$$

✓ their **detection** upon the PMT matrix close to the expected pattern depends on:

- → radiator interactions (ε_{rad})
 - □ absorption and scattering
- \Rightarrow geometrical acceptance (ε_{geo})
 - □ photons lost through the radiator lateral walls
 - □ mirror reflectivity
 - \square photons falling into the non-active area
- ightarrow light guide losses (ε_{lg})
- → PMT quantum efficiency (ε_{pmt})
- \checkmark the number of photons detected varies from event to event

$$n_{p.e} \sim Z^2 \; \Delta L \; \left(1 - rac{1}{eta^2 n^2}
ight) \; \underbrace{arepsilon_{rad} \; arepsilon_{geo} \; arepsilon_{lg} \; arepsilon_{pmt}}_{arepsilon_{tot}(heta_{c}, heta,\phi,P_I)}$$

Charge Reconstruction method

- ✓ cerenkov angle reconstruction Likelihood method applied
- ✓ photoelectron counting the signal (p.e) close to the reconstructed photon pattern is summed up $\Delta r \lesssim 1.5 \ cm$
- ✓ photon detection efficiency radiator, geometrical acceptance, light guide, PMT...
- ✓ Reconstruct electric charge

$$Z^2 \sim rac{n_{p.e}}{arepsilon_{tot}} rac{1}{\Delta L} rac{1}{sin^2 heta_c}$$

Efficiencies: radiator

 calculate the probability of a radiated photon do not interact in the radiator

 $arepsilon_{rad} = rac{1}{H\;\Deltaarphi} \int_{arphi_1}^{arphi_2} e^{-rac{d_\gamma(heta_c,arphi, heta,\ell)}{\Lambda_{int}}}\;darphi\;dz$

Comparison between analytical calculation and Carbon simulated events

good agreement

Efficiencies: geometrical acceptance

photons $\Box dN/d\varphi$ is uniform # events n=1.030 fully 500 contained Incident particle (x,y,θ,ϕ) 400 fully reflected \searrow 300 200 partially contained 100 Φ_h^1 $\mathbf{\phi}_{h^2}$ 0 0.6 0.7 0.8 0.9 0.2 0 0.1 0.3 0.4 0.5 1 ε_{geo} (reconstruction) 0 m ϕ_{m^2} $\approx \sim 60\%$ of the events with $\varepsilon_{geo} > 60\%$ $rac{\Delta arphi_{vis}}{2\pi}$ $arepsilon_{geo}$:

calculate the visible fraction of

Efficiency : Light Guide/PMT

- \Leftrightarrow the probability of a photon surviving LG depends on its incident angle θ_{γ}
- ☞ LG efficiency/event

 $arepsilon_{lg/PMT} = rac{1}{\Delta arphi} \int_{arphi_1}^{arphi_2} arepsilon_{lg} \{ heta_\gamma(heta, heta_c, arphi) \} \; darphi$

Total Reconstruction efficiency

Charge reconstruction

Conclusions

- ✓ After a very successful test flight aboard the Space Shuttle in June 1998, the AMS detector capabilities were extended through the inclusion of new detector systems and larger magnetic field
- \checkmark The RICH detector was designed to provide AMS with
 - \Box very precise velocity measurement ($\Delta\beta/\beta \sim 0.1\%$)
 - $\hfill\square$ extend the charge identification range
 - \Box contribute to e/p separation
- ✓ A likelihood method based on the probability of a hit belonging to a cerenkov photon pattern in a presence of a flat background, was developed for the cerenkov angle reconstruction.
- ✓ A charge reconstruction method was developed based on a event-by-event basis estimation of the effects leading to photon losses (radiator, geometrical acceptance, light guide,...)
- ✓ A RICH prototype was built and is currently being tested with cosmic ray events. Performing as expected.
- \checkmark Definitive evaluation in a beam test run with Ions at Cern, in October.

Additional Slides

From AMS1 to AMS2

- \diamond larger acceptance $\checkmark \sim 0.5 \ m^2.sr$ Resolution (%) \triangleright Superconducting magnet **∨** *B* ~ 0.8 - 0.9 T Tracker will be finished \Box 10 ✓ 8 planes $\checkmark \sim 6 m^2$ silicium $\checkmark \Delta p/p \lesssim 3\%$ up to 100 Gev/c/nucl \triangleright New Detectors □ New Cerenkov Detector (RICH) Resolution (%) ✓ acceptance $\sim 0.4 \ m^2.sr$ (80%) 12 $\checkmark \Delta \beta / \beta$ of 0.1% 10 □ Electromagnetic Calorimeter (ECAL) 8 \checkmark Lead/Scintillating fibers (16 X_0) 6 $\checkmark \Delta E/E = 3\% + 12\%/\sqrt{(E)}$ □ Transition Radiation Detector (TRD) 2 ✓ 20 layers of fleece and Xe/CO_2 straw tubes 0
- (V. Shoutko, Trento 2001)

Particle Mass Identification

- $\Rightarrow \text{ Particle mass identification requires precise measurements on momentum } (p) \text{ and velocity} \\ (\beta)$
- \Leftrightarrow AMS resolutions:
 - $\Box \Delta p/p \lesssim 2\%$ up to 50 GeV/c (protons)
 - □ A velocity resolution (from simulation studies)

protons $\Delta\beta/\beta\sim 0.1\%$ heliums $\Delta\beta/\beta\sim 0.07\%$ beryliums $\Delta\beta/\beta\sim 0.04\%$

 \Leftrightarrow mass resolution:

$$rac{\sigma_M}{M} = rac{\Delta p}{p} \oplus \gamma^2 rac{\Delta eta}{eta}$$

- \Rightarrow Mass separation criterium ($\Delta M > 3\sigma_M$)
 - $\frac{\sigma}{M} < \frac{1}{3} \frac{\Delta M}{M}$

RICH Prototype setup

✓ radiator

- → Aerogel (n=1.030,1050) and NaF
- → 2/3 tiles $(11.5 \times 11.5 \times 1 \ cm^3$ of aerogel stacked
- \rightarrow NaF (0.5 mm thick)
- ➡ Polyester foil to suport the radiator (0.75mm thick)
- \checkmark photomultipliers
 - \Rightarrow Hamma matsu R7600-M16 $\mathbf{4}\times\mathbf{4}$ pixels
 - \rightarrow Matrix active area: 3.1 cm pitch
 - \Rightarrow High Voltage 750-850 V

🗸 Data

- ightarrow Cosmic muon events
- \rightarrow Rate 0.5 Hz
 - (n=1.030) 3 days run $\equiv 200$ K events

