Velocity and Charge Reconstruction with the Rich Detector of the AMS Experiment

F. Barao (LIP-IST, Lisbon)

J.Borges, L.Arruda, M.Pimenta, P.Goncalves, I.Peres, F.Carmo

Outline
\checkmark AMS detector
\checkmark Rich Detector
\checkmark Photon pattern tracing
\checkmark Velocity reconstruction
\checkmark Charge reconstruction
\checkmark Conclusions

4th Workshop on RICH Detectors, NESTOR Institute-Pylos June 5-10, 2002

AMS2: Spectrometer Capabilities

\square particle bending
Superconducting magnet
\square particle direction of incidence Time-of-Flight and RICH
\square Ridgidity (p / Z) Silicon Tracker
\square Velocity $(\boldsymbol{\beta})$
Time-of-Flight and RICH
\square Charge (Q)
Tracker, TOF and RICH
\square e/p separation
TRD and ECAL calorimeter
\square photons
ECAL calorimeter

Physics motivations

\lesssim The study of secondary species such as Li, Be and B which result essentially from CNO spallation provides us information about propagation of cosmic-rays (CNO group) in galaxy (B/C)
($\boldsymbol{Z}>2$ abondance only $\sim 1 \%$)
\Rightarrow The propagation history of the Helium nuclei can be probed measuring the ratio ${ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$
${ }^{3} \boldsymbol{H} \boldsymbol{e}$ is essentially secondary and comes from the spallation of ${ }^{4} \boldsymbol{H e}$
\triangle The measurement of the ratio ${ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be}$ give us information about confinement of cosmic rays in the Galactic volume and is sensitive to different propagation models $\left({ }^{10} \mathrm{Be}\right) t_{1 / 2} \sim 1.5 \times 10^{6} \mathrm{yrs}$
improve current Be isotopic measurements
done at relatively low energies
based in poor event statistics

RICH detector

The Ring Imaging Cerenkov of AMS is a proximity focusing detector with a low index radiator, a high reflectivity mirror and photomultiplier tubes.

```
\(\Leftrightarrow\) velocity measurement \(\frac{\Delta \beta}{\boldsymbol{\beta}}=\mathbf{0 . 1 \%}\)
\(\Rightarrow\) charge measurement \(\quad Z \sim \mathbf{2 5}\)
\(\leftrightarrows\) redundancy on albedo rejection
    \(\overline{\mathrm{He}} / \mathrm{He} \sim \mathbf{1 0}^{-9}\)
\(\Leftrightarrow e / p\) separation
```


RICH Radiator

\checkmark Cerenkov radiation

a charged particle traveling in a medium with a velocity
higher than the light speed radiates photons:
$\cos \theta_{c}=\frac{1}{\beta n}$
\checkmark Light Yield
the light yield increases with the radiator thickness (L), the charge (Z), the velocity $(\boldsymbol{\beta})$ and refractive index (n):
$n_{p . e} \propto Z^{2} L\left(1-\frac{1}{\beta^{2} n^{2}}\right) \int \varepsilon d E$

radiator
Silica Aerogel ($\mathrm{n}=1.030 / \mathrm{n}=1.050$) 2-3cm thick
aerogel tiles $11.5 \times 11.5 \times 1 \mathrm{~cm}^{3}$
$N_{\gamma} \sim 50 / \mathrm{cm}(\mathrm{Z}=1, \beta \sim 1)$
\checkmark Rayleigh scattering $\frac{d \sigma}{d \Omega} \propto \frac{\left(1+\cos ^{2} \theta_{c}\right)}{\lambda^{4}}$
directionality of cerenkov photons lost
transparency decreases for UVs $\boldsymbol{\Lambda}_{i n t}=\frac{\lambda^{4}}{C}$

$$
\begin{array}{ll}
\mathrm{C} \equiv \text { Clarity coeff. } & 0.0042 \mu \mathrm{~m}^{4} / \mathrm{cm} \quad(n=1.030) \\
& 0.0091 \mu m^{4} / \mathrm{cm} \quad(n=1.050)
\end{array}
$$

Detection Matrix

\checkmark Photomultipliers
\Rightarrow matrix with around 700 PMT's
$\Rightarrow 4 \times 4$ multianode R7600-M16 4.5 mm pitch
\Rightarrow borosilicate glass window
\Rightarrow spectral response $300-650 \mathrm{~nm}$ maximum at $\lambda=420 \mathrm{~nm}$
\checkmark Light Guides
Plexiglass ($\mathrm{n}=1.49$) solid guides
Effective pixel size $\sim 8-8.5 \mathrm{~mm}$

Photon pattern tracing

photon tracing includes

\checkmark emission at a reference point with an opening angle $\boldsymbol{\theta}_{\boldsymbol{c}}$ and at a given azimuthal angle φ

$$
\vec{g}^{*}\left(\varphi ; \theta_{c}\right) \xrightarrow{T(\theta ; \phi)} \vec{g}\left(\varphi ; \theta_{c}, \theta, \phi\right)
$$

\checkmark escaping from radiator
\checkmark refracting at radiator boundary
\checkmark reflecting on mirror
\checkmark hitting detection plane
typical patterns for two radiators
\checkmark for aerogel $(\mathrm{n}=1.030)$
\checkmark for $\mathrm{NaF}(\mathrm{n}=1.34)$

$\left(\theta_{c}\right)$ reconstruction: A likelihood approach

\checkmark The AMS Tracker provides the particle direction (θ, ϕ) and impact point at the RICH radiator
\checkmark The photon pattern at the PMT matrix plane is derived as a function of the cerenkov angle $\left(\boldsymbol{\theta}_{\boldsymbol{c}}\right)$
\checkmark The hits associated to the particle track are excluded
\checkmark The maximization of a likelihood function provides the best θ_{c} angle

$$
P\left(\theta_{c}\right)=\prod_{i=1}^{n h i t s} P_{i}\left\{r_{i}\left(\varphi_{i} ; \theta_{c}\right)\right\}
$$

$\boldsymbol{r}_{\boldsymbol{i}} \equiv$ closest distance to photon pattern
$\boldsymbol{P}_{\boldsymbol{i}} \equiv$ probability of a hit belonging to photon pattern

θ_{c} reconstruction: probability function

\checkmark noisy hits distribution essentially flat PMT noise, scattering,...

$$
P_{\text {noise }}=\frac{b}{R} \sim 10^{-3} / \mathrm{cm}
$$

$\boldsymbol{b} \equiv$ photon background fraction per event $\boldsymbol{R} \equiv$ active matrix dimension
\checkmark pattern hits distribution essentially gaussian
pixel size, radiator thickness, chromaticity,...

$$
\begin{equation*}
P_{\text {signal }}=(1-b) \frac{1}{\sigma \sqrt{2 \pi}} \exp ^{-\frac{1}{2}\left(\frac{r_{i}}{\sigma}\right)^{2}} \tag{1}
\end{equation*}
$$

width: $\sigma \sim 0.5 \mathrm{~cm}$
\checkmark combined probability function

$$
P_{i}=(1-b) g\left(r_{i}\right)+\frac{b}{R}
$$

θ_{c} reconstruction: event displays

simulation event
Helium ($\mathrm{p}=20 \mathrm{Gev} / \mathrm{c} /$ nucleon)

simulation event
Helium ($\mathrm{p}=20 \mathrm{Gev} / \mathrm{c} /$ nucleon)

Results: the Number of hits

radiator: aerogel $(\mathrm{n}=1.030) 2 \mathrm{~cm}$ thickness

large tails for events with ≤ 3 hits $\sim 40 \%$ of protons with less than 3 hits

$$
\text { a radiator thickness of } 3 \mathrm{~cm} \text { envisaged }
$$

Cerenkov angle resolution

The cerenkov angle:

$$
\cos \theta_{c}=\frac{1}{\beta n}
$$

The particle velocity uncertainty (per hit):

$$
\frac{\Delta \beta}{\beta}=\tan \theta_{c} \Delta \theta_{c}
$$

The cerenkov angle uncertainty:

$$
\Delta \theta_{c} \sim \cos ^{2} \theta_{c} \frac{\Delta d}{L}
$$

the $\boldsymbol{\theta}_{\boldsymbol{c}}$ uncertainty deals with
\square pixel size (granularity) $\sim 8.5 \mathrm{~mm}$
\square radiator thickness $2-3 \mathrm{~cm}$
\square chromaticity

$$
\begin{array}{c|l|}
\hline \Delta d \sim \frac{\text { pixel }}{\sqrt{12}} & \Rightarrow \Delta \theta_{c} \sim 5 \text { mrad } \\
\Delta d \sim \frac{H \tan \theta_{c}}{\sqrt{12}} & \Rightarrow \Delta \theta_{c}<5 \mathrm{mrad} \\
\Delta \theta_{c} \sim \frac{\Delta n}{\sqrt{2(n-1)}} & \Rightarrow \Delta \theta_{c}<5 \mathrm{mrad}
\end{array}
$$

Cerenkov angle reconstrucion

Cerenkov angle reconstruction for events with at least 3 hits

The reconstructed Cerenkov angle follows the expected law $\cos \theta_{c}=\frac{1}{\beta n}$ at all energies

Results : β resolution scaling

the relative uncertainty on the velocity determination scales down

$$
\frac{\Delta_{\beta}}{\beta}=\tan \theta_{c} \frac{\Delta_{\theta}}{\sqrt{N_{h i t s}}}
$$

with the number of hits

$\Delta \beta / \beta$: Resolution per hit

\checkmark It is possible to estimate the velocity resolution independently of the number of hits of every event

$$
\left(\frac{\Delta \beta}{\beta}\right)_{h i t}=\frac{\Delta \beta}{\beta} \times \sqrt{N_{h i t s}}
$$

RICH Prototype

A RICH prototype was built and submitted to cosmic events at the ISN (Grenoble)

RICH Prototype

Prototype Data Analysis: an event

Data Selection event procedure

\checkmark Look for particle signal in PMT matrix (>5 p.e)

\checkmark Compare position of particle cluster to track extrapolation and require events with a good matching
$\left(\Delta_{x}, \Delta_{y}<0.75 \mathrm{~cm}\right)$

number of hits correlated with the photon pattern

Light Guides behave as expected

Cosmic muons velocity spectrum

Measured $\boldsymbol{\beta}$ on data and simulation

Velocity resolution from one hit

Charge (Z) reconstruction

\checkmark the number of Cerenkov radiated photons when a charged particle crosses a radiator path $\boldsymbol{\Delta} \boldsymbol{L}$, depends on its charge \mathbf{Z}

$$
N \propto Z^{2} \Delta L\left(1-\frac{1}{\beta^{2} n^{2}}\right)
$$

\checkmark their detection upon the PMT matrix close to the expected pattern depends on:
\Rightarrow radiator interactions $\left(\varepsilon_{r a d}\right)$
\square absorption and scattering
\Rightarrow geometrical acceptance $\left(\varepsilon_{\text {geo }}\right)$
\square photons lost through the radiator lateral walls
\square mirror reflectivity
\square photons falling into the non-active area
\Rightarrow light guide losses $\left(\varepsilon_{l g}\right)$

\Rightarrow PMT quantum efficiency $\left(\varepsilon_{p m t}\right)$
\checkmark the number of photons detected varies from event to event

$$
n_{p . e} \sim Z^{2} \Delta L\left(1-\frac{1}{\beta^{2} n^{2}}\right) \underbrace{\varepsilon_{r a d} \varepsilon_{g e o} \varepsilon_{l g} \varepsilon_{p m t}}_{\varepsilon_{t o t}\left(\theta_{c}, \theta, \phi, P_{I}\right)}
$$

Charge Reconstruction method

\checkmark cerenkov angle reconstruction
Likelihood method applied
\checkmark photoelectron counting
the signal (p.e) close to the reconstructed photon pattern is summed up
$\Delta r \lesssim 1.5 \mathrm{~cm}$
\checkmark photon detection efficiency
radiator, geometrical acceptance, light guide, PMT...
\checkmark Reconstruct electric charge

$$
Z^{2} \sim \frac{n_{p . e}}{\varepsilon_{t o t}} \frac{1}{\Delta L} \frac{1}{\sin ^{2} \theta_{c}}
$$

Efficiencies: radiator

calculate the probability of a radiated photon do not interact in the radiator

$\varepsilon_{r a d}=\frac{1}{H \Delta \varphi} \int_{\varphi_{1}}^{\varphi_{2}} e^{-\frac{d_{\gamma}\left(\theta_{c}, \varphi, \theta, \ell\right)}{\Lambda_{i n t}}} d \varphi d z$

Comparison between analytical calculation and Carbon simulated events good agreement

Efficiencies: geometrical acceptance

calculate the visible fraction of photons
$\square d N / d \varphi$ is uniform

$$
\varepsilon_{g e o}=\frac{\Delta \varphi_{v i s}}{2 \pi}
$$

$\sim 60 \%$ of the events with $\varepsilon_{\boldsymbol{g e o}}>60 \%$

Efficiency : Light Guide/PMT

the probability of a photon surviving LG depends on its incident angle $\boldsymbol{\theta}_{\gamma}$
LG efficiency/event

$$
\varepsilon_{l g / P M T}=\frac{1}{\Delta \varphi} \int_{\varphi_{1}}^{\varphi_{2}} \varepsilon_{l g}\left\{\theta_{\gamma}\left(\theta, \theta_{c}, \varphi\right)\right\} d \varphi
$$

Total Reconstruction efficiency

$$
\begin{gathered}
\varepsilon_{t o t}=\frac{1}{2 \pi H_{r a d}} \int_{0}^{H_{\text {rad }}}\left\{\sum_{i}^{v i s . p a t h s} \rho_{i} \int_{\varphi_{i}^{\text {min }}}^{\varphi_{i}^{\text {max }}} e^{-\frac{d_{\gamma}}{\Lambda_{i n t}}} \varepsilon_{l g}\left\{\theta_{\gamma}(\theta, \varphi)\right\}<\varepsilon_{p m t}>d \varphi\right\} d z \\
\rho_{i} \equiv \text { mirror reflectivity }
\end{gathered}
$$

Charge reconstruction

	$\boldsymbol{\Delta} \boldsymbol{Z} / \boldsymbol{Z}$		
	\boldsymbol{Z}	acc=any	acc. $>60 \%$
He	2	16.4%	15.3%
Li	3	12.3%	11.2%
Be	4	10.1%	9.3%
B	5	9.2%	8.4%
C	6	8.5%	7.7%

Conclusions

\checkmark After a very successful test flight aboard the Space Shuttle in June 1998, the AMS detector capabilities were extended through the inclusion of new detector systems and larger magnetic field
\checkmark The RICH detector was designed to provide AMS with
\square very precise velocity measurement $(\boldsymbol{\Delta} \boldsymbol{\beta} / \boldsymbol{\beta} \sim \mathbf{0 . 1 \%})$
\square extend the charge identification range
\square contribute to $\boldsymbol{e} / \boldsymbol{p}$ separation
\checkmark A likelihood method based on the probability of a hit belonging to a cerenkov photon pattern in a presence of a flat background, was developed for the cerenkov angle reconstruction.
\checkmark A charge reconstruction method was developed based on a event-by-event basis estimation of the effects leading to photon losses (radiator, geometrical acceptance, light guide,...)
\checkmark A RICH prototype was built and is currently being tested with cosmic ray events. Performing as expected.
\checkmark Definitive evaluation in a beam test run with Ions at Cern, in October.

Additional Slides

From AMS1 to AMS2

\Rightarrow larger acceptance
$\checkmark \sim 0.5 \mathrm{~m}^{2} . \mathrm{sr}$
$』$ Superconducting magnet
$\checkmark B \sim 0.8-0.9 \mathrm{~T}$
\Rightarrow Tracker will be finished
$\checkmark 8$ planes
$\checkmark \sim 6 m^{2}$ silicium
$\boldsymbol{\Delta} \boldsymbol{\Delta} \boldsymbol{p} / \boldsymbol{p} \lesssim \mathbf{3 \%}$ up to $100 \mathrm{Gev} / \mathrm{c} /$ nucl
\leftrightarrows New Detectors

- New Cerenkov Detector (RICH)
\checkmark acceptance $\sim 0.4 \mathbf{m}^{\mathbf{2}} . \boldsymbol{s r}(80 \%)$
$\boldsymbol{\nu} \boldsymbol{\Delta} \boldsymbol{\beta} / \boldsymbol{\beta}$ of 0.1%
\square Electromagnetic Calorimeter (ECAL) \checkmark Lead/Scintillating fibers $\left(\mathbf{1 6} \boldsymbol{X}_{\mathbf{0}}\right)$
$\checkmark \Delta E / E=3 \%+12 \% / \sqrt{(} \boldsymbol{E})$
\square Transition Radiation Detector (TRD)
$\checkmark 20$ layers of fleece and $\boldsymbol{X e} / \boldsymbol{C O}_{\mathbf{2}}$ straw tubes

Particle Mass Identification

\lesssim Particle mass identification requires precise measurements on momentum (p) and velocity (β)
¢ AMS resolutions:
$\square \boldsymbol{\Delta} / \boldsymbol{p} \lesssim \mathbf{2 \%}$ up to $50 \mathrm{GeV} / \mathrm{c}$ (protons)

A velocity resolution (from simulation studies)

protons	$\Delta \beta / \beta \sim 0.1 \%$
heliums	$\Delta \beta / \beta \sim 0.07 \%$
beryliums	$\Delta \beta / \beta \sim 0.04 \%$

\leadsto mass resolution:
$\frac{\sigma_{M}}{M}=\frac{\Delta p}{p} \oplus \gamma^{2} \frac{\Delta \beta}{\beta}$
\triangleright Mass separation criterium $\left(\Delta M>3 \sigma_{M}\right)$ $\frac{\sigma}{M}<\frac{1}{3} \frac{\Delta M}{M}$

RICH Prototype setup

\checkmark radiator
\Rightarrow Aerogel ($\mathrm{n}=1.030,1050$) and NaF
$\Rightarrow 2 / 3$ tiles $\left(\mathbf{1 1 . 5} \times \mathbf{1 1 . 5} \times \mathbf{1} \mathrm{cm}^{3}\right.$ of aerogel stacked
$\Rightarrow \mathrm{NaF}$ (0.5 mm thick)
\Rightarrow Polyester foil to suport the radiator (0.75 mm thick)
\checkmark photomultipliers
\Rightarrow Hammamatsu R7600-M16 4×4 pixels
\Rightarrow Matrix active area: 3.1 cm pitch
\Rightarrow High Voltage 750-850 V
\checkmark Data
\Rightarrow Cosmic muon events
\Rightarrow Rate 0.5 Hz
$\Rightarrow(\mathrm{n}=1.030) 3$ days run $\equiv 200 \mathrm{~K}$ events

AMS2 prototype

